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Foreward

This document is a product of the NASA Software Program, an Agencywide program to
promote the continual improvement of software engineering within NASA.  The goals
and strategies for this program are documented in the NASA Software Strategic Plan,
July 13, 1995.

Additional information is available from the Software IV&V Facility on the world-wide-
web site http://www.ivv.nasa.gov
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1. INTRODUCTION
This  NASA Guidebook for Safety Critical Software - Analysis and Development, was
prepared by the  NASA Lewis Research Center, Office of Safety and Mission Assurance,
under a Research Topic (RTOP) task  for the National Aeronautics and Space
Administration.

The  NASA Software Safety Standard NSS 1740.13 [1]prepared by NASA HQ addresses
the “who, what,  when and why” of Software Safety Analyses. This Software Safety
Analysis Guidebook addresses the “how to”.

1.1 Scope
The focus of this document is on  analysis and development of  safety critical software.
This guidebook can also be used for analysis and development of firmware which is
software residing in non-volatile memory (e.g.. ROM or EPROM).

This Guidebook describes resource data required for each analysis task, the methodology
and tools for performing the analysis, and the output products.  It also describes how to
use these products in the overall risk management activity.

The Guidebook  goes on to describe techniques and procedures in more detail.   To make
the guidebook more practical, it contains analysis examples and possible pitfalls and
problems that may be encountered during the analysis process.  This Guidebook does not
contain new analysis techniques.  It is a synergistic collection of techniques already in use
throughout NASA and industry.  Opinions differ widely concerning the validity of the
various techniques, and this Guidebook attempts to present these opinions, without
prejudging their validity.  In most cases there are few or no “metrics” to quantitatively
evaluate or compare the techniques.

Numerous existing documents identify various analysis techniques, and those techniques
which are well described elsewhere are referenced.  If a NASA standard or guideline
exists which defines the format and/or content of a specific document, it is referenced and
the user should follow the instructions of that document.

In addition to the existing techniques in the literature, some practical methods are
presented which have been developed and used successfully at the system level for top-
down software hazards analyses.  Their approach is similar to NSTS 13830
Implementation Procedure for NASA Payload System Safety requirements [2].

There are many different bottom-up techniques described in the open literature that are
brought together, evaluated, and compared. This guidebook addresses the value added
versus cost of each technique with respect to the overall software development and
assurance goals.

The reader is expected to have some familiarity with the NASA methodologies for system
safety analysis and/or software development.  However, no experience with either
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is assumed or required.  Readers completely unfamiliar with NASA methodologies for
software development and system safety may have difficulty with some portions of this
guidebook.  Acronyms and definitions of terminology used in this guidebook are
contained in Appendix-A.

The term “software components” is used in a generic sense to represent important
software development products such as software requirements, software designs, software
code or program sets, software tests, etc. can we remove this?

1.2  Purpose
The purpose of this guidebook is to aid organizations involved in the development and
assurance of safety critical software.   (i.e. software developers, software product
assurance, system safety and software safety organizations).

1.3  Acknowledgments
Much of the material presented in this Guidebook has been based directly or indirectly on
a variety of sources (NASA, government agencies, technical literature sources), and
contains some original material previously undocumented.   These sources are too
numerous to list here.

A special acknowledgment is owed to the NASA/Caltech Jet Propulsion Laboratory of
Pasadena, California, whose draft “Software Systems Safety Handbook” [4] has been used
verbatim or slightly modified in several sections of this Guidebook.

We would like to thank the many NASA engineers and contractors who reviewed drafts
of the guidebook, these include:

Reviewer                     NASA Center              City                              Contractor

Gilbert White NASA HQ Code-QS Washington D.C.

Paul Senger NASA HQ Code-QS Washington D.C. Vitro Corp

Ricky Butler NASA Langley Hampton, VA

Michael Holloway NASA Langley Hampton, VA

James Watson NASA Langley Hampton, VA

Judith Gregory NASA Marshall Huntsville, AL

Bonnie Pfitzer NASA Marshall Huntsville, AL      Madison Research Corp

Scott Seyl NASA Johnson Houston, TX

David Tadlock NASA Johnson Houston, TX

Dr. Robyn Lutz JPL Caltech Pasadena, CA Univeristy of Iowa

George Abendroth NASA Lewis Cleveland, OH
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Michael Ciancone NASA Lewis Cleveland, OH

Sell James NASA Lewis Cleveland, OH

David Marchese NASA Lewis Cleveland, OH

Susan Cole NASA Lewis Cleveland, OH Raytheon Corp

James Roupp NASA Lewis Cleveland, OH Raytheon Corp

Michele D. Smith NASA Lewis Cleveland, OH Raytheon Corp

William Stuckey NASA Lewis Cleveland, OH Raytheon Corp

We also thank the American Society of Safety Engineers for permission to reproduce
portions of the paper Gowen, Lon D. and Collofello, James S.  “Design Phase
Considerations for Safety-Critical Software Systems”.  PROFESSIONAL SAFETY,
April,1995.
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2.  SYSTEM SAFETY PROGRAM
A system safety program is a prerequisite to performing analysis or development of safety
critical software.  This program maps out the types of analysis and the schedule for
performing a series of systems and subsystem level analyses throughout the development
cycle.  It will also address how safety analyses results and the sign-off and approval
process should be handled.

The first system safety program activity is a Preliminary Hazard Analysis (PHA),
discussed in Section 2.1.  The results of this step, a list of hazard causes and potential
hazard controls, are flowed to the safety requirements development activity discussed in
Section 2.2.

An aerospace system generally contains three elements: hardware, software and one or
more human operators (e.g., ground controllers, mission specialists or vehicle pilots).
Each of these can be broken down further into subsystems and components. While
individual elements, subsystems or components are often  non-hazardous when
considered in isolation, the combined system may exhibit various safety risks or hazards.
This is especially true for software.

Although it is often claimed that “software cannot cause hazards”, this is only true where
the software resides on a non-hazardous platform and does not interface or interact with
any hazardous hardware or human operator.  Similarly, a hardware component such as an
electrical switch or a fluid valve might be non-hazardous as a stand-alone component, but
may become hazardous or safety critical when used as an inhibit in a system to control a
hazard.   Therefore,  throughout this guidebook, software is considered to be a system
subset, (i.e., a Sub-system), within a larger System.

Before software can be analyzed or developed  for use in a hazardous  system or
environment, a system PHA must be performed. Once initial system PHA results are
available, safety requirements flowdown and subsystem and component hazard analyses
can begin.  System safety program analyses follow the lifecycle of the system and
software development efforts,   commencing with the Preliminary Hazard Analysis
(PHA).

2.1  Preliminary Hazard Analysis (PHA)
The PHA is the first source of “specific” software safety requirements, (i.e., unique to the
particular system architecture).  It is a prerequisite to performing any software safety
analysis.

The PHA is the first of a series of system level hazard analyses, whose scope and
methodology is described in the NASA NHB 1700 series documents [1] and NSTS 13830
Implementation Procedure for NASA Payload System Safety Requirements.[2] It is not
the purpose of this document to explain or duplicate the process of systems hazard
analyses described in the other NASA documents.   However, for software developers,
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managers, and others unfamiliar with  NASA system safety, the following section
summarizes those processes and shows how the outputs of the PHA are fed into the
software safety analysis process.

2.1.1  PHA Approach

The following is exerpted from NHB 1700.1 (V1-B) Appendix-H:

The Preliminary Hazard Analysis “documents which generic hazards (See Figure 2-1,
Generic Hazards Checklist for a sample checklist of generic hazards) are associated with
the design and operational concept.  This provides the initial framework for a master
listing (or hazard catalog) of hazards and associated risks that require tracking and
resolution during the course of the program design and development.  The PHA may be
used to identify safety-critical systems that will require the application of Failure Modes
and Effects Analysis (FMEA) and further hazard analysis during the design phases.  The
program shall require and document a PHA to obtain an initial listing of risk factors for a
system concept.  The PHA effort shall be started during the concept exploration phase or
earliest life cycle phases of the program.  A PHA considers hardware, software, and the
operational concepts.  Hazards identified in the PHA will be assessed for risk based on
the best available data from similar systems, other lessons learned, and hazards associated
with the proposed design or function.  Mishap and lessons learned information are
available in the Mishap Reporting and Corrective Action System (MR/CAS) and the
Lessons Learned Information System (LLIS).  The risk assessment developed from the
PHA will be used to ensure safety considerations are included in the tradeoff studies of
design alternatives; development of safety requirements for program and design
specifications, including software for safety-critical monitor and control; and definition of
operational conditions and constraints.”
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Table 2-1 Generic Hazards Checklist

I CONTAMINATION/CORROSION A. CHEMICAL DISASSOCIATION
B. CHEMICAL REPLACEMENT/COMBINATION
C. MOISTURE
D. OXIDATION
E. ORGANIC (FUNGUS/BACTERIAL, ETC.
F. PARTICULATE
G. INORGANIC (INCLUDES ASBESTOS)

II ELECTRICAL DISCHARGE/SHOCK A. EXTERNAL SHOCK
B. INTERNAL SHOCK
C. STATIC DISCHARGE
D. CORONA
E. SHORT

III ENVIRONMENTAL/WEATHER A. FOG
B. LIGHTNING
C. PRECIPITATION (FOG/RAIN/SNOW/SLEET/HAIL)
D. SAND/DUST
E. VACUUM
F. WIND
G. TEMPERATURE EXTREMES

IV FIRE/EXPLOSION A. CHEMICAL CHANGE (EXOTHERMIC/ENDOTHERMIC)
B. FUEL AND OXIDIZER IN PRESENCE OF PRESSURE

AND IGNITION SOURCE
C. PRESSURE RELEASE/IMPLOSION
D. HIGH HEAT SOURCE

V IMPACT/COLLISION A. ACCELERATION (INCLUDING GRAVITY)
B. DETACHED EQUIPMENT
C. MECHANICAL SHOCK/VIBRATION/ACOUSTICAL
D. METEOROIDS/METEORITES
E. MOVING/ROTATING EQUIPMENT

VI LOSS OF HABITABLE ENVIRONMENT* A. CONTAMINATION
B. HIGH PRESSURE
C. LOW OXYGEN CONTENT
D. LOW PRESSURE
E. TOXICITY
F. LOW TEMPERATURE
G. HIGH TEMPERATURE

VII PATHOLOGICAL/PHYSIOLOGICAL/
PSYCHOLOGICAL

A. ACCELERATION/SHOCK/IMPACT/VIBRATION
B. ATMOSPHERIC PRESSURE (HIGH, LOW, RAPID

CHANGE)
C. HUMIDITY
D. ILLNESS
E. NOISE
F. SHARP EDGES
G. SLEEP, LACK OF
H. VISIBILITY (GLARE, WINDOW/HELMET FOGGING)
I. TEMPERATURE
J. WORKLOAD, EXCESSIVE
K. HIGH PLACES (POSSIBLE FALLING)

VIII RADIATION A. ELECTROMAGNETIC
B. IONIZING RADIATION (INCLUDES RADON)
C. NONIONIZING RADIATION

IX TEMPERATURE EXTREMES A. HIGH
B. LOW
C. VARIATIONS

*Health issues require coordination with Occupational Health Personnel
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2.1.1.1  Identifying Hazards

Preliminary hazard analysis of the entire system is performed from the top down to
identify hazards and hazardous conditions.  Its goal is to identify all credible hazards up
front. Initially the analysis is hardware driven, considering the hardware actuators, end
effectors and energy sources, and the hazards that can arise.    For each identified hazard,
the PHA identifies the hazard causes and candidate control methods.   These hazards and
hazard causes are mapped to system functions and their failure modes. Most of the critical
functions are associated with one or more system controls.  These control functions cover
the operation, monitoring and/or safing of that portion of the system and safety
assessment must consider the system through all the various applicable subsystems
including hardware, software, and operators.

To assure full coverage of all aspects of functional safety, it can be helpful to categorize
system functions as two types:

1) “Must work” functions (MWF)

2) “Must not work” functions (MNWF)

The system specification often initially defines the criticality (e.g., safety critical) of some
system functions, but may be incomplete.  This criticality is usually expressed only in
terms of the Must-Work nature of the system function, and often omits the Must-Not-
Work functional criticality. The PHA defines all the hazardous MNWFs (Must-Not-
Work-Functions) as well as the MWFs (Must Work Functions).

Examples:

1) A science experiment might have a system Criticality designation of 3 (Non-critical)
in terms of its system function, because loss of the primary experiment science data
does not represent a hazard. However, the experiment might still be capable of
generating hazards such as electric shock due to inadvertent activation of a power
supply during maintenance.  Activation of power during maintenance is a
MNWF.

2) An experiment might release toxic gas if negative pressure (vacuum) is not
maintained.   Maintaining a negative pressure is a MWF.

3) An air traffic control system and aircraft flight control systems are designed to
prevent collision of two aircraft flying in the same vicinity. Collision avoidance is a
MWF.

4) A spacecraft rocket motor might inadvertently ignite while it is in the STS Cargo
Bay.  Motor ignition is a MNWF, at that time.  Obviously it becomes a MWF when
it is time for it to fire.

If functions identified in the PHA were not included in the system specification, it should
be amended to address control of those functions.
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2.1.1.2  Risk Assessment

Hazards are prioritized by the system safety organization in terms of their severity and
likelihood of occurrence, as shown in Table 2-2 Hazard Prioritization - System Risk
Index.

The following definitions of hazard severity levels are from NASA NHB 1700.1.

Catastrophic . . . . . . Loss of entire system; loss of human life or permanent
disability

Critical . . . . . . . . . . . .Major system damage; severe injury or temporary disability

Marginal . . . . . . . . . . .Minor system damage; minor injury

Negligible . . . . . . . . . .No system damage; no injury

Table 2-2 Hazard Prioritization - System Risk Index

Severity Levels Likelihood of Occurrence
Probable Occasional Remote Improbable

Catastrophic 1 1 2 3
Critical 1 2 3 4
Marginal 2 3 4 5
Negligible 3 4 5 5

1 = Highest Priority (Highest System Risk), 5 = Lowest Priority (Lowest System Risk).

The hazard prioritization is important for determining allocation of resources and
acceptance of risk.   Hazards with the highest risk, Level 1, are not permitted in a system
design.   A system design exhibiting “1” for hazard risk level must be redesigned to
eliminate the hazard.   The lowest risk level, 5, does not require any safety analysis or
controls.   For the three levels of risk in-between, the amount of safety analysis required
increases with the level of risk.   The extent of a safety effort is discussed below in
Section 3, where three levels of safety analysis are described, i.e. Minimum, Moderate
and Full.   These correspond to risk as follows:

Risk Level                         Type of Safety Analysis Recommend

1                          Not Applicable (Prohibited)

2                                                               Full

3                                                      Moderate

4                                                      Minimum

5                                                            None
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The NASA policy towards hazards of Risk level 2, 3 or 4 is defined in NHB 1700.1 (V1-
B) Section 102-f, as follows: “Eliminate or control hazards by corrective action with the
following priorities:

(1) Eliminate hazards by design.”

Hazards are eliminated where possible. This is accomplished through design, such
as by eliminating an energy source.  For example, a hazardous high voltage
battery may be replaced with a non-hazardous low voltage battery.

“(2) Minimize or negate the effects of hazards by design.”

Hazards which cannot be eliminated must be controlled.  For those hazards, the
PHA evaluates what can cause the hazards, and how to control the potential
hazard causes.  Control by design is preferred.  For example, providing failure
tolerance (e.g. by redundancy - series and/or parallel as appropriate), by
providing substantial margins of safety, or by providing automatic safing.

“(3) Install safety devices.”

“(4) Install caution and warning devices.”

Software used in these caution and warning devices is safety critical.

“(5) Develop administrative controls, including special procedures.”

Control by procedure is sometimes allowed, where sufficient time exists for a
flight crew member or ground controller to perform safing action.  This concept of
“time to criticality” was used in the NASA Space Station Freedom program.

The PHA is not final because of the absence of design maturity.  Later in the design
process hazards may be added or deleted, and additional hazard analysis performed;  but
an initial set of hazards must be identified early in order to begin safety engineering tasks
in a timely manner to avoid costly design impacts later in the process.  PHA  is also
required before software subsystem hazard analysis can begin.   Those hazard causes
residing in the software portion of a control system become the subject of the software
subsystem hazard analysis.  It is important to reexamine software’s role and safety impact
throughout the system development phases.  Software is often relied on to work around
hardware problems encountered which result in additions and/or changes to functionality.

Which Software is Hazardous ?

Either remote or embedded real-time software which controls hazardous or safety critical
hardware are considered hazardous.  As it is normally cost prohibitive to analyze all
system software to the same depth, the system PHA, when integrated with the
requirements placed on the software, identifies those programs, routines, or modules that
are critical to system safety and must be examined in depth.

Software which does not control or monitor a real world (real time or near real time)
process is normally not hazardous. Software safety therefore concerns itself  mostly with
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software which controls real world processes,  whose malfunction can result in a hazard.
However, other types of software can also be the subject of software safety.

Software which performs off-line processes, results of which may result in a decision for
automatic or manual operation that could be hazardous must be considered as safety
critical.  For example, test software (software used to test hardware or other software),
and  certain types of off-line computerized analysis could potentially lead to a hazardous
condition.  Faulty test software used to test safety critical hardware could cause damage
or fail to report failures.   Offline computerized analyses such as thermal analysis or
structural analysis are sometimes used to verify safety critical hardware designs (e.g.,
structural strength or fatigue life) and, if performed incorrectly, can indirectly result in
hardware failures, especially if the hardware is not tested.

2.1.2  Preliminary Hazard Analysis Process

First, System and Safety experts examine the proposed system concepts and requirements
and identify System Level Hazards considering areas such as power sources, chemicals
usage, mechanical structures, and interactor, time constraints, etc. (as per para 2.1.1.1
above)

Next, the hazard cause(s) are identified.  Each hazard has at least one cause, such as a
hardware component failure, operator error, or software fault.   The PHA should identify
some or all of the hazard causes, based on the system definition at that point in the
development effort.

Next, at least one hazard control must be identified for each hazard cause. NASA safety
standards often stipulate the methods of control required for particular hazard causes.
This is not necessary for PHA, but is necessary at later phases in the system development
process.   Each control method must be a “real feature”, usually a design feature
(hardware and/or software), or a procedural sequence and must be verifiable.

For each hazard control at least one verification method must be identified.   Verification
can be by analysis, test or inspection.   In some cases, the verification method is defined
by established NASA safety requirements.  (e.g. Payload Safety Requirements Ser NSTS
1700.1 (V1-B)).

Each system hazard is documented in a “Hazard Report”.  Required data items for a
Hazard Report are described below.   Figure 2-1 Payload Hazard Report Form shows the
NASA Shuttle Payload Hazard Report, which identifies hazards, their causes, controls,
verification methods and verification status.   Detailed instructions for completing this
form are given in  NHB 1700.1 (V1-B) NASA Safety Policy and Requirements
Document, Chapter-3, System Safety, and Appendix-H (Analysis Techniques) [1].   This
form is offered as a good example.  NASA does not have an agency wide standard except
SER Payloads at this time so each project or group may develop their own.  These reports
once created are revisited and updated on subsequent Safety Analyses throughout the life
cycle of the system.  A summary of the process is described below:

Hazard Description:   This describes a system hazard, such as an uncontrolled release of
energy resulting in a mishap.
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Safety requirement: This can be a hardware or a software requirement and is usually a
system level requirement. It can result in further flowdown to software functionality by
identifying software Hazard Controls as described below.

Hazard Cause: This is usually a fault or defect in hardware or software. A software cause
might be an inadvertent command, improper execution of a critical process, loss of
control, incorrect sequence,  lack of necessary command, etc.

Hazard Control: This is usually a design feature to control a hazard cause. The hazard
control should be related to the applicable safety requirements cited by the hazard report.
For example, where independence and fault tolerance are required, the hazard control
block describes how the design meets these requirements.

Some formats of hazard reports include a block to describe:

Hazard Detection Method: This is the means to detect imminent occurrence of a
hazardous condition as indicated by recognizing unexpected values of measured
parameters.   In the NSTS Payload Hazard Report (Figure 3.1) it is implicitly
included in the “Hazard Control” section.

Safety Verification Method:  This identifies methods used to verify the validity of each
Hazard Control.  These methods include  analysis, test, demonstration or inspection.

Status of Verification:  This identifies scheduled or actual start and completion dates of
each verification item, and if the item is open or closed at the time of writing.

Updates: Since all required information is typically not available at the start of the
development lifecycle, details for the various items are filled in and expanded during the
development lifecycle.  Hazard causes and controls are identified early in the process and
verifications are addressed in later lifecycle phases.
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Figure 2-1 Payload Hazard Report Form

PAYLOAD HAZARD REPORT NO.

PAYLOAD: PHASE:

SUBSYSTEM: HAZ. GROUP: DATE:

HAZARD TITLE:

APPLICABLE SAFETY REQUIREMENTS: HAZARD CATEGORY
CATASTROPHIC

CRITICAL

DESCRIPTION OF HAZARD:

HAZARD CAUSES:

See Continuation Sheet

HAZARD CONTROLS:

See Continuation Sheet

SAFETY VERIFICATION METHODS:

See Continuation Sheet

STATUS OF VERIFICATION:

See Continuation Sheet

APPROVAL PAYLOAD ORGANIZATION STS

PHASE I

PHASE II

PHASE III
JSC Form 542B (rev Nov. 82)  NASA JSC
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Figure 2-2 Payload Hazard Report Continuation Sheet

PAYLOAD HAZARD REPORT CONTINUATION SHEET NO.

PAYLOAD: PHASE:

HAZARD TITLE: DATE:

HAZARD CAUSES:

HAZARD CONTROLS:

SAFETY VERIFICATION METHODS:

STATUS OF VERIFICATION:

JSC Form 542B (rev Nov. 82)  NASA JSC
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2.1.3 Tools and Methods for PHA

Some tools and methods for performing a formal PHA are detailed in NASA Safety
Manual, Chapter-3, System Safety [1].  Only items pertaining to software tools and
software methods are discussed in this guide.

2.2  Safety Requirements Flowdown
The results of the first cycle of the system safety analysis, the PHA are a list of hazard
causes and a set of candidate hazard controls.  Any software hazard causes and software
hazard controls and mitigators  are taken forward as inputs to the software safety
requirements flowdown process.

System hazard controls should be traceable to system requirements.   If  controls
identified by PHA are not in the system specification, it should be amended by adding
safety requirements to control the hazards.   Then the process of flowdown from system
specification to software specification will include the necessary safety requirements.

At least one software requirement is generated for each software hazard control.  It is
incorporated into the Software Requirements Specification (SRS) as a safety critical
software requirement.

Any software item identified as a potential hazard cause, control,  or mitigation, whether
controlled by hardware, software or  human operator, is designated as safety critical, and
is subjected to rigorous software quality control, analysis, and testing.  It is also to be
traced through the software safety analysis process including verification.

2.2.1  Relating Software to Hazards

Generally a “software related hazard” is a result of loss of control of some safety critical
system function.  Remember, Software is a SUBSET of the complete system (a Sub-
system) and as such must usually be considered in a systems context.

What is safety critical software ?

Software within a control system containing one or more hazardous or safety critical
functions, is safety critical software.

Software subsystem hazard analyses should be performed on any safety critical
functions involving:

• a hazard cause,

• a hazard control,

• software providing messages making safety critical decisions to operators, or

• used as a means of failure/fault detection.

Also, "contamination" of safety critical software by nearby uncontrolled software must be
considered.  Software that might not be safety critical in and of itself, could lock up the
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computer or write over critical memory areas of critical software when sharing a CPU or
any routines with the safety critical software

A hazard cause is typically a fault, error or defect in either hardware, or software, or
human operator. For every hazard cause there must be at least one control method, where
control method is usually a design feature (hardware and/or software), or a procedural
step.  Examples of hazard causes and controls are given in Table 2-3  Hazard Causes and
Controls - Examples on page 16.

Software faults can cause hazards and software can be used to control hazards.   Some
software hazard causes can be addressed with hardware hazard controls, although this is
becoming less and less practical as software becomes more complex.  For example, a
hardwired gate array could be preset to look for certain predetermined hazardous words
(forbidden or unplanned) transmitted by a computer, and shut down the computer upon
detecting such a word.  In practice, this is nearly impossible today because thousands of
words and commands are usually sent on standard buses.

Many hardware hazard causes can be addressed with software hazard controls. For
example, software can detect hazardous hardware conditions (via instrumentation) and
execute a corrective action and/or warn operators.   Increasingly, hazard responses are
delegated to software because of the quick reaction time needed and as personnel are
replaced by computers.

However, in those designs, the software control must be isolated from the hazard cause
which it is controlling.  That is, the software hazard control must normally reside on a
different computer processor from the one where the hazard/anomally might occur.  Since
a processor hardware failure would most likely affect its own software’s ability to react to
that CPU hardware failure it  is best to monitor and control from a separate CPU.  This is
a challenging aspect of software safety, because multi-processor architectures are costly
and system designers often prefer to use single processor designs which are not failure
tolerant. Also, system designers are sometimes reluctant to accept the NASA axiom that a
single computer is inherently not failure tolerant.  Many also believe that computers fail
safe, whereas NASA experience has shown that computers often exhibit hazardous failure
modes.  Another fallacy is to believe that upon any fault or failure detection, the safest
action is always to shut down a program or computer automatically.  This action can
cause a more serious hazardous condition.

NASA based on their extensive experience with spacecraft flight operations has
established levels of failure tolerance based on the hazard severity level necessary to
achieve acceptable levels of risk.

In Brief:

Catastrophic  Hazards:  must be able to tolerate two hazard control failures.

Critical Hazards:  must be able to tolerate a single hazard control failure.

NASA relies primarily on hardware controls to prevent hazards.  Software can be used,
but must be implemented with care.  The number of  latent errors that may exist in
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software is still unpredictable (non-random) and software failure tolerance cannot be
verified in the same way as hardware.  As the software development process matures,
hopefully the software’s reliability will improve.  When possible NASA allows software
to be only one of two hazard controls for catastrophic hazards.

Table 2-3  Hazard Causes and Controls - Examples

Cause Control Example of Control Action

Hardware Hardware Pressure vessel with pressure relief valve.
Hardware Software Fault detection and safing function; or arm/fire check on hazardous

commands
Hardware Operator Operator opens switch to remove power from failed unit
Software Hardware Hardwired timer or discrete hardware logic to screen invalid

commands or data. Or sensor directly triggering a safety switch to
override a software control system

Software Software Two independent processors, one checking the other and intervening
if a fault is detected.  Emulating expected performance and detecting
deviations.

Software Operator Operator sees control parameter violation on display and terminates
process

Operator Hardware Three electrical switches in series in a firing circuit to tolerate two
operator errors

Operator Software Software validation of operator initiated hazardous command
Operator Operator Two crew members, one commanding the other  monitoring

In each case where software is a potential hazard cause or is utilized as a hazard control,
the software  is “Safety Critical” and should be analyzed, and its development controlled.

2.3  Software Subsystem Hazard Analysis
After safety critical software is identified in the first cycle of the PHA, software hazard
analysis can begin. The first cycle of System Hazard Analysis and software hazard
analysis are top-down only. Bottom-up analyses take place after a sufficient level of
design detail is available. The first cycle of bottom-up analysis is “Criticality analysis” of
requirements, as described in Section 5.1.2.  Remember, at this phase, only the highest
level of definition is available for what functions the software will perform and these may
change as development proceeds.

Many analysis and development techniques exist for safety critical software, and there is
no “one size fits all” approach.  The extent of software safety effort required must be
planned based on the degree of safety risk of the system as discussed in Table 2-2 Hazard
Prioritization - System Risk Index (page 8) which identifies three levels of software
safety effort: full, moderate and minimum.
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Section 3, SOFTWARE SAFETY PLANNING, describes these three levels of software
safety effort, and presents guidelines on which analysis and development techniques may
be selected for each. Section 4, SAFETY CRITICAL SOFTWARE DEVELOPMENT,
then describes development tasks and techniques in detail.  Section  5, SOFTWARE
SAFETY ANALYSIS, describes the analysis tasks and techniques in detail.
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3.  SOFTWARE SAFETY PLANNING
The following section describes how to plan a software safety effort, and how to tailor it
according to the risk level of the system.  In Section 2.1.1.2, determination of the level of
safety risk inherent in the system was presented.  Section 2.2.1 relates the system safety
risk to the software.  Then, Section 3.3, discusses tailoring the level of effort for both
software development, and software analysis tasks performed by software development
personnel and software safety personnel.

On the development side, the software safety engineer works in conjunction with the
system safety organization to develop software safety requirements, flows those safety
requirements to the software developers, and monitors their implementation.   On the
analysis side, the software safety engineer analyzes software products and artifacts to
identify new hazards and new hazard causes to be controlled, and provides the results to
the system safety organization to be integrated with the other (non-software) subsystem
analyses.

  System Safety         Å

             ô                  Ä System Developers

Software  Safety ö        Ã          ñ

            ô                                 ô

Software  Developers                Ã

The analysis and development tasks follow the software development lifecycle as follows.
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3.1  Software Development Lifecycle Approach
Table 3-1 NASA Software Lifecycle - Reviews and Documents (page 20)shows the
typical NASA software waterfall design lifecycle phases and lists the reviews and
deliverable project documents required at each lifecycle phase.  Each of these reviews and
project documents should contain appropriate references and reports on software safety.
Software safety tasks and documents for each design lifecycle phase are also shown.

If a particular software safety task or document is defined elsewhere in this guidebook,
the section number where it can be found is shown next to the name.  Software
development tasks and documents listed in the table will be described in the following
subsections, organized by the lifecycle phase in which they are conducted or produced.

In rapid prototyping environments, or spiral lifecycle environments, software artifacts,
including prototype codes, are created early (i.e. in requirements or architectural design
phases).  The early artifacts are evaluated and performance results used to modify the
requirements.  Then the artifacts are regenerated using the new requirements.   This
process may go through several iterations.  In these environments, Safety Analyses are
also done in several smaller iterative steps.  Safety and development must work closely
together to coordinate the best time to perform each round of analysis.



NASA-GB-1740.13-96 20

Table 3-1 NASA Software Lifecycle - Reviews and Documents

LIFECYCLE
PHASES

MILESTONE
REVIEWS

SOFTWARE SAFETY
TASKS

DOCUMENTS

Software
Concept and
Initiation
(Project System
and Subsystem
Requirements
and Design
Development)

SCR - Software
Concept
Review

Software
Management
Plan Review

Phase-0 Safety
Review

Scoping Safety Effort
2.1.2  PRELIMINARY
HAZARD ANALYSIS
2.1.3  (PHA)
Phase 0/1Safety Reviews
Hazards Tracking and
Problem Resolution

 Software Management Plan
 Software Systems
 Safety Plan
 Software Configuration
     Management Plan
 Software Quality
     Assurance Plan
 Risk Management Plan

Software
Requirements

SRR - Software
Requirements
Review

Phase-1 Safety
Review

2.2  SAFETY
REQUIREMENTS
FLOWDOWN

4.2.2 Generic Software
Safety Requirements

4.2.1 Development of
Software Safety
Requirements

5.1 Software Safety
Requirements Analysis

5.1.2 Requirements
Criticality Analysis
5.1.3 Specification
Analysis
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LIFECYCLE
PHASES

MILESTONE
REVIEWS

SOFTWARE SAFETY
TASKS

DOCUMENTS

Software
Architectural  or
Preliminary
Design

 Software
Preliminary
  Design
Review (PDR)

Phase-1/2
Safety Review

5.2.1 Update Criticality
Analysis

5.2.2 Conduct Hazard
Risk Assessment

5.2.3 Analyze
Architectural Design
5.2.4.1 Interdependence
Analysis
5.2.4.2  Independence
Analysis

 Preliminary Acceptance
     Test Plan
 Software Design
Specification-
     (Preliminary)

Software
Detailed
Design

 Software
Critical  Design
Review (CDR)

Phase-2 Safety
Review

5.3.1 Design Logic
Analysis

5.3.6 Software Fault
Tree Analysis (SFTA)

5.3.7 Petri-Nets

5.3.8 Dynamic
Flowgraph Analysis

5.3.2 Design Data
Analysis

5.3.4 Design Constraint
Analysis
5.3.13 Formal Methods
and Safety-Critical
Considerations
5.3.14 Requirements
State Machines

 Final Acceptance Test
     Plan
 Software Design
Specification-
     (Final)
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LIFECYCLE
PHASES

MILESTONE
REVIEWS

SOFTWARE SAFETY
TASKS

DOCUMENTS

Software
Implementation
(Code and Unit
Test)

Formal
Inspections,
Audits.

Phase-2/3
Safety Review

5.4.1 Code Logic
Analysis

5.4.4 Code Data Analysis

5.4.5 Code Interface
Analysis

5.4.8 Code Inspection
Checklists (including
coding standards)

5.4.9 Formal Methods

5.4.10 Unused Code
Analysis

Formal Inspection Reports

Software
Integration and
Test

Test Readiness
Review

Phase-3 Safety
Review

4.6.1 Testing Techniques

4.6.2 Software Safety
Testing

4.6.3 Test Witnessing
5.5.1 Test Coverage

5.5.2 Test Results
Analysis

Test Reports, Problem/Failure

      Resolution Reports.

Software
Acceptance and
Delivery

Software
Acceptance
Review

Phase-3 Safety
Review

Software Delivery
Documents; Acceptance Data
Package

Software
Sustaining
Engineering and
Operations

(Same activities as for
development)

(Update of all relevant
documents)
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3.2   Tailoring the Effort - Value vs Cost
This section discusses tailoring the software safety effort based on the inherent
characteristics of the software and the level of hazardous risk in a system and subsystems.
Sections 4 and 5 of this Guidebook describe tasks, processes, methodologies, and
reporting or documentation required for a full-fledged, formal software safety program
for use on a large, “software-intensive” project.  A project may choose to implement all
the activities described in those sections or, based upon information presented in this
section, may choose to tailor the software safety program.  However, even if a project
should decide it does not intend to employ software controls of safety-critical system
functions, some software safety tasks may be necessary.  At the very minimum, a project
must review all pertinent specifications, designs, implementations, tests, engineering
change requests, and problem/failure reports to determine if any hazards have been
inadvertently introduced. Ultimately, the categorization of a project’s software and the
range of selected activities must be negotiated and approved by project management,
software development, software quality assurance, and software systems safety.

The scoping of software safety activities for full or partial development efforts is
discussed in this section.

3.2.1  Full Scale Development Effort vs Partial Scale Development

The software safety effort interfaces with the software development activity and the
system safety activity. The system development phases are separated by system design
reviews.  Each system design review is conducted approximately in parallel with a
corresponding system safety review as shown in Table 3-1 NASA Software Lifecycle -
Reviews and Documents on page 20.

The software development effort may or may not be synchronized with the system
development effort.   There are normally no separate safety reviews for software.  Even
the phased system safety reviews are normally only done for manned spacecraft systems
and payloads. For small (low value) unmanned or non-flight systems there is usually only
one formal software safety review conducted at the end of the development effort.
Sometimes this is simply an agenda item within an overall system acceptance review, for
programs with low safety risk.

The results of the software safety analysis of each software lifecycle development phase
should be reported at the respective system safety review for high risk programs,  or
summarized at the respective milestone design review for low risk programs.



NASA-GB-1740.13-96 24

3.2.2 Oversight Required

The level of software quality assurance and independent oversight required for safety
assurance depends on the system risk index as follows:

System Risk Index Degree of Oversight

1 Not applicable (Prohibited)

2 Fully independent IV & V organization, as well as in-
house SQA.

3 In house SQA organization.

4 Minimal to None required.

5 None required

This level of oversight is not for mission success purposes, where the oversight can be
greater or less in each case.

A full scale software development effort is typically performed on a safety critical flight
system, e.g. a manned space vehicle, or high value one-of-a-kind spacecraft or aircraft,
critical ground control systems, critical facilities, critical ground support equipment,
unmanned payloads on expendable vehicles, etc.   Other types of  aerospace systems and
equipment often utilize less rigorous development programs, such as non-critical ground
control systems, non-critical facilities, non-critical ground support equipment, non-critical
unmanned payloads on expendable vehicles, etc.

In those cases, subsets of the milestone reviews and software safety development and
analysis tasks can be used.

3.2.3 Categorizing Safety-Critical Software Sub-systems

The effects of hazards may involve dangers to people, hardware, facilities, and/or the
environment. Safety protection, either software or hardware, is mandatory for humans,
any type of spacecraft, experiment, or instrument hardware.  The level of safety effort
required by NASA for protection of hardware varies according to the classification and
hazard level.  Classification of an unmanned spacecraft (A to D) is based on cost and
level of acceptable risk as defined in NMI 8010.1 [3].  The classification determines the
required level of effort for protection of hardware.

Most aerospace products are built up from small, simple hardware components to make
large, complex systems.  These components usually have a small number of states and
can be tested exhaustively to determine their reliability based on failure rates.  Reliability
of a large hardware system is determined by the reliability values of its components.
Reliability and safety goals of hardware systems can usually be reached through a
combination of tested design and selection of components with appropriate reliability
ratings.
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Achieving safety goals through use of highly reliable software is more difficult.
Reliability of software is much harder to determine.  Software does not wear out or break
down but may have a large number of states which cannot be fully tested.  An important
difference between hardware and software is that many of the mathematical functions
implemented by software are not continuous functions, but functions with an arbitrary
number of discontinuities [4].  Although mathematical logic can be used to deal with
functions that are not continuous, the resulting software may have a large number of
states and lack regularity.  It is usually impossible to establish reliability values and prove
correctness of design by testing all possible states of a medium to large (more than 40-
50K lines of code) software system within a reasonable amount of time, if ever.
Furthermore, testing can only commence after preliminary code has been generated,
typically late in the development cycle. As a result, it is very difficult to establish accurate
reliability and design correctness values for software.

If the inherent reliability of software cannot be accurately measured or predicted, and
most software designs can not be exhaustively tested, the level of effort required to meet
safety goals must be determined using other inherent characteristics of the system.  The
following characteristics have a strong influence on the ability of software developers to
create reliable, safe software:

1) The degree of control that the software exercises over safety-critical functions in
the system.

Software which can cause a hazard if it malfunctions is included in the category of
high risk software.  Software which is required to either recognize hazardous
conditions and implement automatic safety control actions, or which is required to
provide a safety critical service, or to inhibit a hazardous event, will require more
software safety resources and detailed assessments than software which is only
required to recognize hazardous conditions and notify a human operator to take
necessary safety actions.

This assumes that the human operator has redundant sources of data independent
of  software, and can detect and correctly react to misleading software data before
a hazard can occur.   Fatal accidents have occurred involving poorly designed
human computer interfaces, such as the Therac-25 X-ray machine [2].  In cases
where an operator relies only on software monitoring of critical functions, then a
complete safety effort is required. (e.g., might require monitoring via two or more
separate CPUs and resident software with voting logic.).

Software Control Categories:  MIL-STD-882C [4] categories software
according to their degree of control of the system, as described below:

IA. Software exercises autonomous control over potentially hazardous
hardware systems, subsystems or components without the possibility of
intervention to preclude the occurrence of a hazard.  Failure of the
software, or a failure to prevent an event, leads directly to a hazard's
occurrence.
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IIA. Software exercises control over potentially hazardous hardware systems,
subsystems, or components allowing time for intervention by independent
safety systems to mitigate the hazard.  However, these systems by
themselves are not considered adequate.

IIB. Software item displays information requiring immediate operator action to
mitigate a hazard.  Software failures will allow or fail to prevent the
hazard's occurrence.

IIIA Software item issues commands over potentially hazardous hardware
systems, subsystems or components requiring human action to complete
the control function.  There are several, redundant, independent safety
measures for each hazardous event.

IIIB. Software generates information of a safety critical nature used to make
safety critical decisions.  There are several redundant, independent safety
measures for each hazardous event.

IV. Software does not control safety critical hardware systems, subsystems or
components and does not provide safety critical information.

MIL-STD-882C then relates these software control categories to system hazard levels via
a matrix, and uses this to decide what level of analysis and test should be applied.   This
approach is described below in Section 3.3.

2) The complexity of the software system.  Greater complexity increases the chances
of errors.

The number of safety-related software requirements for hazards control increases
with complexity.  Some rough measures of complexity include the number of
subsystems controlled by software and the number of interfaces between
software/hardware, software/user and software/software subsystems.  Interacting,
parallel executing processes also increase complexity.  Note that quantifying
system complexity can only be done when a high level of design maturity exists
(i.e., detail design or coding phases).  Software complexity can be estimated based
on the number and types of logical operations it performs.  Several automated
programs exist to help determine software’s complexity.  These should be used if
possible; however, the results should be used as guidelines only!

3) The timing criticality of hazardous control actions.

A system with software control of hazards that can get out of control within a very
short period of time will require more software/safety assurance effort than slower
changing systems. For example, spacecraft that travel beyond Earth orbit have a
turnaround time spent notifying a ground human operator of a possible hazard and
waiting for commands on how to proceed that may exceed the time it takes for the
hazard to occur.

The above criteria define a system according to inherent properties and mission
constraints.   They do not attempt to classify a system based on the severity of any of its
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potential hazards as described in Section 2.  Scoping the effort according to system
hazard risk is described in the next section.

3.3 Scoping of Software Subsystem Safety Effort
The level of required software safety effort for a system (shown in Table 3-3) is
determined by its System Category, derived from  Table 2-2 Hazard Prioritization -
System Risk Index (Page 8), and the hazard severity level from Section 2.1.1.2 Risk
Assessment (Page 8).

All levels of software safety effort should include reviews by systems safety personnel of
project specifications, requirements, design, etc., of all non-safety-critical components, to
determine if these have been correctly developed and have not introduced any extra safety
hazards.  Software quality assurance activities should always verify that all safety
requirements can be traced to specific design features, to specific program sets/code
modules, and to specific tests conducted to exercise safety control functions of software.
(See Section 5.1.1 Software Safety Requirements Flowdown Analysis).  Sections 3.3.1
through 3.3.3 below help determine the appropriate methods for software quality
assurance, software development and software safety for full, moderate, and minimum
safety efforts.

Alternative Prioritization Method

Section 3.2.2 (1) described the MIL-STD-882C software control categories.   That
standard uses those categories to prioritize software safety tasks according to the matrix
that follows.

The Software Hazard Criticality Matrix.is established using the hazard categories for the
rows and the Software Control Categories for the columns.  The matrix is completed by
assigning Software Hazard Risk Index numbers to each element just as Hazard Risk
Index numbers are assigned in the Hazard Risk Assessment Matrix. A Software Hazard
Risk Index (SHRI) of `1' from the matrix implies that the risk may be unacceptable.  A
SHRI of `2' to `4' is undesirable or requires  acceptance from the managing activity.
Unlike the hardware related HRI, a low index number does not mean that a design is
unacceptable.  Rather, it indicates that greater resources need to be applied to the analysis
and  testing of the software and its interaction with the system.
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Table 3-2  MIL-STD-882C Software Hazard Criticality Matrix

HAZARD  CATEGORY

CONTROL
CATEGORY

CATASTRO-
PHIC

CRITICAL MODERATE NEGLIGIBLE /
MARGINAL

I 1 1 3 5

II 1 2 4 5

III 2 3 5 5

III 3 4 5 5

Software Hazard Risk Index Suggested Criteria

1 High Risk - significant analysis and testing resources

2 Medium risk - requirements and design analysis and in-depth testing
required

3-4 Moderate risk - high level analysis and testing acceptable with management
approval

5 Low Risk - Acceptable

3.3.1 Full Software Safety Effort

Systems and subsystems that have severe hazards which can escalate to major failures in
a very short period of time require the greatest level of safety effort.  Some examples of
these types of systems include life support, fire detection and control, propulsion/pressure
systems, power generation and conditioning systems, and pyrotechnics or ordnance
systems. These systems require a formal, rigorous program of quality and safety
assurance to ensure complete coverage and analysis of all requirements, design, code, and
tests.
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Table 3-3 Software Sub-system categories

System
Category

Descriptions

I Partial or total autonomous control of safety critical functions by software.

 (System Risk
     Index 2)

Complex system with multiple subsystems, interacting parallel processors, or
multiple interfaces.
Some or all safety-critical functions are time critical.

II Detects hazards, notifies human operator of need for safety actions.

(System Risk
    Index 3)

Moderately complex with few subsystems and/or a few interfaces, no parallel
processing.
Some hazard control actions may be time critical but do not exceed time
needed for adequate human operator response.

III No software control of safety critical functions; no reporting of hazards to
human operator.

(System Risk
   Index 4)

Simple system with only 2-3 subsystems, limited number of interfaces.

Not time-critical.

Note: System risk index number is taken from Table 2-2 Hazard Prioritization - System
Risk Index (Page 8 ).



NASA-GB-1740.13-96 30

Table 3-4 Required Software Safety Effort

SYSTEM
CATEGORY

HAZARD  SEVERITY LEVEL
 from Section 2.1.1.2

See Table 3-2 CATASTRO-
PHIC

CRITICAL MODERATE NEGLIGIBLE /
MARGINAL

I

(System Risk
Index 2)

Full Full Moderate Minimum

II

(System Risk
Index 3)

Moderate Moderate Moderate Minimum

III

(System Risk
Index 4)

Minimum Minimum Minimum Minimum

3.3.2 Moderate Software Safety Effort

Systems and subsystems which fall into this category typically have either a limited
hazard potential or, if they control serious hazards, the response time for initiating hazard
controls to prevent failures is long enough to allow for notification of human operators
and for them to  respond to the hazardous situation.  Examples of these types of systems
include microwave antennas, low power lasers, and shuttle cabin heaters.  These systems
require a rigorous program for safety assurance of software identified as safety-critical.
Non-safety-critical software must be regularly monitored to ensure that it cannot
compromise the safety-critical portions of the software.

3.3.3 Minimum Software Safety Effort

For systems in this category, either the inherent hazard potential of a system is very low
or control of the hazard is accomplished by non-software means.  Failures in these types
of systems are primarily reliability concerns.  This category may include such things as
scan platforms and systems employing hardware interlocks and inhibits.  Software
development in these types of systems must be monitored on a regular basis to ensure that
safety is not inadvertently compromised or non features/functions added, which now
make the software safety critical, but a formal program of software safety is not usually
necessary.
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3.4  Software Safety Assurance Techniques for Software
Development Phases
This section provides software safety guidance for planning both development and
analysis tasks during different life cycle phases.  Specific details pertaining to the
performance and implementation of both tasks is discussed later in Section 4
(Development Tasks) and Section 5 (Analysis Tasks).

There are many software engineering and assurance techniques which can be used to
control software development and result in a high-quality, reliable, and safe product.
This section provides lists of recommended techniques which have been used
successfully by many organizations. Software developers may employ several techniques
for development phase, based on a project's required level of software safety effort.  Other
techniques which are not listed in these tables may be used if they can be shown to
produce comparable results.  Ultimately, the range of selected techniques must be
negotiated and approved by project management, software development, software quality
assurance, and software systems safety.

Table 3-5 Software Requirements Phase through Table 3-11 Software Module Testing
are modifications of tables that appear from an early International Electrotechnical
Committee (IEC) draft standard IEC 1508, "Software For Computers In The Application
Of Industrial Safety-Related Systems" [5].  This document is currently under review by
national and international representatives on the IEC to determine its acceptability as an
international standard on software safety for products which contain Programmable
Electronic Systems (PESs).   This set of tables is a good planning guide for software
safety.

These tables provide guidance on the types of assurance activities which may be
performed during the lifecycle phases of safety-critical software development.  For this
guidebook, the Required Software Safety Efforts values displayed in  Table 3-4 Required
Software Safety Effort (page 30), will determine which development activities are
required for each level of effort.

Each of the following tables lists techniques and recommendations for use based on
safety effort level for a specific software development phase or phases.   The
recommendations  are coded as:

M     -   Mandatory

HR   -   Highly Recommended

R      -   Recommended

NR   -   Not Recommended

Most of the "Not Recommended" entries result from consideration of time and cost in
relation to the required level of effort.  A mixture of entries marked as "Recommended"
may be performed if extra assurance of safety is desired. "Highly Recommended" entries
should receive serious consideration for inclusion in system development. If not included,
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it should be shown that safety is not compromised.   In some cases the tables in this
guidebook take a more conservative view of applicability of the techniques than the
original IEC tables.  The final list of techniques to be used on any project should be
developed jointly by negotiations between project management and safety assurance.

All the following tables, Table 3-5 Software Requirements Phase through Table 3-11
Software Module Testing , list software development, safety and assurance activities
which should be implemented in the stated phases of development.

Life Cycle Phase Tasks and Priorities How To:
Development Tasks

How To:
Analysis Tasks

Concept Initiation Table 3-5 Software
Requirements Phase

Section 4.1 Section 5.1

Software
Requirements

Table 3-5 Software
Requirements Phase

Section 4.2 Section 5.1

Software
Architectural Design

Table 3-5 Software
Requirements Phase

Section 4.3 Section 5.1

Software Detailed
Design

Table 3-7 Software
Detailed Design
Phase

Section 4.4 Section 5.3

Software
Implementation

Table 3-8 Software
Implementation
Phase

Section 4.5 Section 5.1

Software Test Table 3-9 Software
Testing Phase
Table 3-10 Dynamic
Testing
Table 3-11 Software
Module Testing

Section 4.6 Section 5.1
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Table 3-5 Software Requirements Phase

TECHNIQUE SAFETY EFFORT LEVEL

MIN MOD FULL

2.1 Preliminary Hazard Analysis
(PHA)

M M M

5.1.1 Software Safety
Requirements Flowdown
Analysis

R HR HR

5.1.1.1 Checklists and cross
references

HR HR HR

5.1.2 Requirements Criticality
Analysis

NR R HR

4.2.2 Generic Software Safety
Requirements

R HR M

5.1.3 Specification Analysis NR R HR
4.2.4 Formal Inspections of
Specifications

R M M

5.1.5 Timing, Throughput And
Sizing Analysis

HR M M

Key: M = Mandatory

HR = Highly Recommended

R = Recommended

NR = Not Recommended
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Table 3-6 Software Architectural Design Phase

TECHNIQUE SAFETY EFFORT LEVEL

MIN MOD FULL

5.2.1  Update Criticality Analysis NR R HR
5.2.2 Conduct Hazard Risk
Assessment

R HR M

5.2.3 Analyze Architectural
Design

HR M M

5.2.4.1  Interdependence
Analysis

R HR M

5.2.4.2  Independence Analysis HR M M

Table 3-7 Software Detailed Design Phase

TECHNIQUE SAFETY EFFORT LEVEL

MIN MOD FULL

5.3.6 Software Fault Tree
Analysis (SFTA)

NR R M

5.3.7 Petri-Nets R HR M
5.3.14  Requirements State
Machines

R HR M

5.3.2 Design Data Analysis R HR M
5.3.3  Design Interface Analysis R HR M
5.3.10 Measurement of
Complexity

R HR M

5.3.4 Design Constraint Analysis R HR M
5.3.11 Safe Subsets of
Programming languages

R HR M

5.3.13 Formal Methods and
Safety-Critical Considerations

NR R HR

5.3.15 Formal Inspections HR M M
Requirements translation to HOL NR R HR
Emulation of HOL Statements NR R HR
Static Code Analysis NR R HR
Ada Emulation NR R HR
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Table 3-8 Software Implementation Phase

TECHNIQUE SAFETY EFFORT LEVEL

MIN MOD FULL

5.4.1  Code Logic Analysis R HR M
5.4.4 Code Data Analysis R HR M
5.4.5  Code Interface Analysis R HR M
5.4.10 Unused Code Analysis R HR M
5.4.8  Code Inspection Checklists
(including coding standards)

R HR M

5.4.9 Formal Methods NR HR HR

Table 3-9 Software Testing Phase

TECHNIQUE SAFETY EFFORT LEVEL

MIN MOD FULL

Testing Defensive Programming NR HR M

Boundary Value Tests R HR M

Error Guessing NR NR R

Test Coverage Analysis R HR M

Functional Testing M M M

Fagan Formal Inspections (Test
Plans)

HR HR M

Reliability Modeling NR HR HR

Checklists of Tests R HR HR
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Table 3-10 Dynamic Testing

TECHNIQUE SAFETY EFFORT LEVEL

MIN MOD FULL

Typical sets of sensor inputs HR M M

Test specific functions HR M M

Volumetric and statistical tests R HR HR

Test extreme values of inputs R M M

Test all modes of each sensor R M M

Path testing R M M

Every statement executed once HR M M

Every branch tested at least once HR M M

Every predicate term tested R HR M

Every loop executed 0, 1, many
times

R M M

Every path executed R HR M

Every assignment to memory
tested

NR HR HR

Every reference to memory tested NR HR HR

All mappings from inputs checked NR HR HR

All timing constraints verified R M M

Test worst case interrupt sequences R R NR
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Test significant chains of interrupts R R NR

Test Positioning of data in I/O
space

HR M M

Check accuracy of arithmetic NR HR M

All modules executed at least once M M M

All invocations of modules tested HR M M

Table 3-11 Software Module Testing

TECHNIQUE SAFETY EFFORT LEVEL

MIN MOD FULL

Simulation (Test Environment) R HR M

Load Testing (Stress Testing) HR M M

Boundary Value Tests R HR M

Test Coverage Analysis R HR M

Functional Testing M M M

Performance Monitoring R HR M

Formal Progress Reviews R M M

Reliability Modeling NR HR HR

Checklists of Tests R HR HR
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4.  SAFETY CRITICAL SOFTWARE DEVELOPMENT
A structured development environment and an organization using state of the art methods are
prerequisites to developing dependable safety critical software.

The following requirements and guidelines are intended to  carry out the cardinal safety rule and its
corollary that no single event or action shall be allowed to initiate a potentially hazardous event and
that the system, upon detection of an unsafe condition or command, shall inhibit the potentially
hazardous event sequence and originate procedures/functions to bring the system to a
predetermined “safe” state.

The purpose of this section is to describe the software safety activities which should be
incorporated into the software development phases of project development.  The software safety
information which should be included in the documents produced during these phases is also
discussed.

If  NASA standards or guidelines exist which define the format and/or content of a specific
document, they are referenced and should be followed.  The term "software components" is used in
a general sense to represent important software development products such as software
requirements, software designs, software code or program sets, software tests, etc.

4.1  Software Concept and Initiation Phase
For most NASA projects this lifecycle phase involves system level requirements and design
development.

Although most project work during this phase is concentrated on the subsystem level, software
development has several tasks that must be initiated.  These include the creation of important
software documents and plans which will determine how, what, and when important software
products will be produced or activities will be conducted.   Each of the following documents
should address software safety issues:

Document                                               Software Safety Section
System Safety Plan, Include software as a subsystem, identify tasks.

Software Concepts Document, Identify safety critical processes.

Software Management Plan, Coordination with systems safety tasks, flowdown
and Software Configuration incorporation of safety requirements.  Applicability
Management Plan, to safety critical software.

Software Security Plan, and the Security of safety critical software.

Software Quality Assurance Plan.  Support to software safety, verification of software
safety requirements, safety participation in software
reviews and inspections.
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4.2  Software Requirements Phase
The cost of correcting software faults and errors escalates dramatically as the development life
cycle progresses,  making it important to correct errors and implement correct software
requirements from the very beginning.  Unfortunately, it is generally impossible to eliminate all
errors.

Software developers must therefore work toward two goals:

(1) to develop complete and correct requirements and correct code

(2) to develop fault-tolerant designs, which will detect and compensate for software
faults“on the fly”.

NOTE:    (2) is required because (1) is usually impossible.

This section of the guidebook describes safety involvement in developing safety requirements for
software.  The software safety requirements can be top-down (flowed down from system
requirements) and/or bottom-up (derived from hazards analyses).   In some organizations, top-
down flow is the only permitted route for requirements into software, and in those cases, newly
derived bottom-up safety requirements must be flowed back into the system specification.

The requirements of software components are typically expressed as functions with
corresponding inputs, processes, and outputs,  plus additional requirements on interfaces, limits,
ranges, precision, accuracy, and performance.  There may also be requirements on the data of the
program set - its attributes, relationships, and persistence, among others.

Software safety requirements are derived from the system and subsystem safety requirements
developed to mitigate hazards identified in the Preliminary, System, and Subsystems Hazard
Analyses (see Section 2.1 PHA page 4).

Also, system safety flows requirements to systems engineering.   The systems engineering group
and the software development group have a responsibility to coordinate and negotiate
requirements flowdown to be consistent with the software safety requirements flowdown.

The software safety organization should flow requirements into the following documents:

Software Requirements Document (SRD)

Safety-related requirements must be clearly identified in the SRD.

Software Interface Specification (SIS) or Interfaces Dontrol Document ICD)

SIS activities identify, define, and document interface requirements internal to the [sub]system in
which software resides, and between system (including hardware and operator interfaces),
subsystem, and program set components and operation procedures.

Note that the SIS is sometimes effectively contained in the SRD, or within an Interface Control
Document (ICD) which defines all system interfaces, including hardware to hardware, hardware to
software, and software to software.
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4.2.1  Development of Software Safety Requirements

Software safety requirements are obtained from several sources, and are of two types:  generic
and specific.

The generic category of software safety requirements are derived from sets of requirements that
can be  used in different programs and environments to solve common software safety problems.
Examples of generic software safety requirements and their sources are given in Section 4.2.2
Generic Software Safety Requirements(page 41).   Specific software safety requirements are
system unique functional capabilities or constraints which are identified in three ways:

1) Through top down analysis of system design requirements (from specifications):

The system requirements may identify system hazards up-front, and specify which
system functions are safety critical.   The (software) safety organization participates or
leads the mapping of these requirements to software.

2) From the Preliminary Hazard Analysis (PHA):

PHA looks down into the system from the point of view of system hazards.   
Preliminary hazard causes are mapped to, or interact with, software.   Software 
hazard control features are identified and specified as requirements.

3) Through bottom up analysis of design data, (e.g. flow diagrams, FMEAs, fault trees 
etc.):

Design implementations allowed but not anticipated by the system requirements are analyzed and
new hazard causes are identified.   Software hazard controls are specified via requirements when
the hazard causes map, to or interact with,  software.

4.2.1.1 Safety Requirements Flowdown

Generic safety requiredments are established “a priori” and placed into the system specification
and/or overall project design specifications.  From there they are flowed into lower level unit and
module specifications.

Other safety requirements, derived from bottom-up analysis, are flowed up from subsystems and
components to the system level requirements.  These new system level requirements are then
flowed down across all affected subsystems.  During the System Requirements Phase,
subsystems and components may not be well defined. In this case, bottom-up analysis might not
be possible until the Architectural Design Phase or even later.

Section 5.1.1, Software Safety Requirements Flowdown Analysis, verifies that the safety
requirements have been properly flowed into the specifications.

4.2.2  Generic Software Safety Requirements

The generic category of software safety requirements are derived from sets of requirements and
best practices used in different programs and environments to solve common software safety
problems.  Similar processors/platforms and/or software can suffer from similar or identical



NASA-GB-1740.13-9641

design problems.  Generic software safety requirements capture these lessons learned and provide
a valuable resource for developers.

Generic requirements prevent costly duplication of effort by taking advantage of existing proven
techniques and lessons learned rather than reinventing techniques or repeating mistakes.   Most
development programs should be able to make use of some generic requirement; however, they
should be used with care.

As technology evolves, or as new applications are implemented, new "generic" requirements will
likely arise, and other sources of generic requirements might become available.  A partial listing
of generic requirement sources is shown below:

NSTS 19943 Command Requirements and Guidelines for NSTS Customers

STANAG 4404 (Draft) NATO Standardization Agreement (STANAG) Safety Design 
Requirements and Guidelines for Munition Related Safety Critical Computing Systems

WSMCR 127-1 Range Safety Requirements - Western Space and Missile Center, 
Attachment-3 Software System Design Requirements.   This document is being replaced 
by  EWRR (Eastern and Western Range Regulation) 127-1, Section 3.16.4 Safety Critical
Computing System Software Design Requirements.

AFISC SSH 1-1  System Safety Handbook - Software System Safety, Headquarters Air 
Force Inspection and Safety Center.

EIA Bulletin  SEB6-A System Safety Engineering in Software Development (Electrical 
Industries Association)

Underwriters Laboratory - UL 1998 Standard for Safety - Safety-Related Software, 
January 4th, 1994

NUREG/CR-6263 MTR 94W0000114 High Integrity Software for Nuclear Power Plants,
The MITRE Corporation, for the U.S. Nuclear Regulatory Commission.

GENERIC SOFTWARE SAFETY REQUIREMENTS FROM MSFC

1. The failure of safety critical software functions shall be detected,  solated, and
recovered from such that catastrophic and critical hazardous events are prevented
from occurring.

2. Software shall perform automatic Failure Detection, Isolation, and Recovery (FDIR)
for identified safety critical functions with a time to criticality under 24 hours.

3. Automatic recovery actions taken shall be reported to the crew, round, or controlling
executive.  There shall be no necessary response from crew or ground operators to
proceed with the recovery action.

4. The FDIR switchover software shall be resident on an available, non-failed control
platform which is different from the one with the function being monitored.

5. Override commands shall require multiple operator actions.
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6. Software shall process the necessary commands within the time to criticality of a
hazardous event.

7. Hazardous commands shall only be issued by the controlling application, or by the
crew, ground, or controlling executive.

8. Software that executes hazardous commands shall notify the initiating crew, ground
operator, or controlling executive upon execution or provide the reason for failure to
execute a hazardous command.

9. Prerequisite conditions (e.g., correct mode, correct configuration, component
availability, proper sequence, and parameters in range) for the safe execution of an
identified hazardous command shall be met before execution.

10. In the event that prerequisite conditions have not been met, the software shall reject
the command and alert the crew, ground operators, or the controlling executive.

11. Software shall make available status of all software controllable inhibits to the crew,
ground operators, or the controlling executive.

12. Software shall accept and process crew, ground operator, or controlling executive
commands to activate/deactivate software controllable inhibits.

13. Software shall provide an independent and unique command to control each software
controllable inhibit.

14. Software shall incorporate the capability to identify and status each software inhibit
associated with hazardous commands.

15. Software shall make available current status on software inhibits associated with
hazardous commands to the crew, ground operators, orcontrolling executive.

16. All software inhibits associated with a hazardous command shall have a unique
identifier.

17. Each software inhibit command associated with a hazardous command shall be
consistently identified using the rules and legal values.

18. If an automated sequence is already running when a software inhibit associated with a
hazardous command is activated, the sequence shall complete before the software
inhibit is executed.

19. Software shall have the ability to resume control of an inhibited operation after
deactivation of a software inhibit associated with a hazardous command.

20. The state of software inhibits shall remain unchanged after the execution of an
override.

21. Software shall provide error handling to support safety critical functions.

22 Software shall provide caution and warning status to the crew, ground operators, or
the controlling executive.
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23. Software shall provide for crew/ground forced execution of any automatic safing,
isolation, or switchover functions.

24. Software shall provide for crew/ground forced termination of any automatic safing,
isolation, or switchover functions.

25. Software shall provide procession for crew/ground commands in return to the
previous mode or configuration of any automatic safing, isolation, or switchover
function.

26. Software shall provide for crew/ground forced override of any automatic safing,
isolation, or switchover functions.

27. Software shall provide fault containment mechanisms to prevent error propagation
across replaceable unit interfaces.

28. Hazardous payloads shall provide failure status and data to core software systems.
Core software systems shall process hazardous payload status and data to provide
status monitoring and failure annunciation.

29. Software (including firmware) Power On Self Test (POST) utilized within any
replaceable unit or component shall be confined to that single system process
controlled by the replaceable unit or component.

30. Software (including firmware) POST utilized within any replaceable unit or
component shall terminate in a safe state.

31. Software shall initialize, start, and restart replaceable units to a safe state.

32. For systems solely using software for hazard risk mitigation, software shall require
two independent command messages for a commanded system action that could result
in a critical or catastrophic hazard.

33. Software shall require two independent operator actions to initiate or terminate a
system function that could result in a critical hazard.

34. Software shall require three independent operator actions to initiate or terminate a
system function that could result in a catastrophic hazard.

35. Operational software functions shall allow only authorized access.

36. Software shall provide proper sequencing (including timing) of safety critical
commands.

37. Software termination shall result in a safe system state.

38. In the event of hardware failure, software faults that lead to system failures, or when
the software detects a configuration inconsistent with the current mode of operation,
the software shall have the capability to place the system into a safe state.
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39. When the software is notified of or detects hardware failures, software faults that lead
to system failures, or a configuration inconsistent with the current mode of operation,
the software shall notify the crew, ground operators, or the controlling executive.

40. Hazardous processes and safing processes with a time to criticality such that timely
human intervention may not be available, shall be automated (i.e., not require crew
intervention to begin or complete).

41. The software shall notify crew, ground, or the controlling executive during or
immediately after execution of an automated hazardous or safing process.

42. Unused or undocumented codes shall be incapable of producing a critical or
catastrophic hazard.

43. All safety critical elements (requirements, design elements, code modules, and
interfaces) shall be identified as "safety critical."

44. An application software set shall ensure proper configuration of inhibits, interlocks,
and safing logic, and exception limits at initialization.

4.2.2.1  Fault and Failure Tolerance/Independence

Most NASA space systems employ failure tolerance to achieve an acceptable degree of safety.
This is primarily achieved via hardware, but software is also important, because improper
software design can defeat the hardware failure tolerance and vice versa.

Not all faults lead to a failure, however, every failure results from one or more faults.  A fault is
an error that does not effect the functionality of the system, such as bad data from either input,
calculations, or output, an unknown command, or a command or data coming at an unknown
time.  If properly designed, the software, or system, can respond to “glitches” by detecting these
errors and correcting them, intelligently.  This would include checking input and output data by
possibly doing limit checking and setting the value to a known safe value or requesting and/or
waiting for the next data point, or for I/O, have CRC checks and handshaking so that garbled or
unrecognized messages could be detected and either dropped or request retransmission of the
message.  Occasional bad I/O, data or commands should be considered ‘faults’, unless there are
too many of them and the system should be ‘fault’ tolerant.  One or more intelligent fault
collection routines should be part of the program to track, and possibly log, the number and type
of errors.  These collection routines would then either handle the caution and warning and/or
recovery for the software system, or each collection routine could raise a flag to a higher level of
control when the number of faults over time or the combination of fault types is programmed to
determine that a looming system failure within its area.  With faults, the system should continue
to operate normally.

A failure tolerant design detects a failure and puts the software and/or system into a changed
operating state, either by switching to backup software or hardware (i.e. s/w routine, program,
CPU, secondary sensor input or valve cut-off, etc.) or by reducing the functionality of the system
but continuing to operate.
This leads to whether a system is to be built fault or failure tolerant or both.  If the system,
including software, is built to handle most probable, and some less probable but possibly



NASA-GB-1740.13-9645

hazardous faults, it may be able to preclude many possible failure scenarios.  Taking care of
problems while they are still faults can help prevent the software, or the system, from going into
failure.  The complaint with building in fault tolerance is that it requires multiple checks and
monitoring at very low levels, while if major failures can be detected, isolated, stopped or
recovered from, it is presumed that this would require less work and be simpler.
For safety critical systems, it is best to design in both fault and failure tolerance.  The fault
tolerance keeps most of the minor errors from propagating into failures.  Failures must still be
detected and dealt with, whether as a result of fault collection/monitoring routines or by direct
failure detection routines and/or hardware.  In this guidebook, both fault and failure tolerance are
discussed.  The proper blending of both to meet the requirements of your particular system must
be determined by the software designers and the safety engineers.

“Must-Work Functions” (MWFs) achieve failure tolerance through independent parallel
redundancy.   For parallel redundancy to be truly independent there must be dissimilar software
in each parallel path.  Software can sometimes be considered “dissimilar” if N-Version
programming is properly applied, see Section 4.3 Architectural Design Phase below.

“Must-Not-Work Functions” (MNWFs) achieve failure tolerance through independent
multiple series inhibits.   For series inhibits to be considered independent they must be generally
controlled by different processors containing dissimilar software.

In both cases, software must be specified to preserve the hardware failure tolerance via proper
allocation amongst hardware units.

Fault/Failure Detection, Isolation and Recovery (FDIR):

FDIR is a problematic design area, where improper design can result in system false alarms,
“bogus” system failures, or failure to detect important safety critical system failures.

FDIR for the NASA Space Station has included two approaches:

1) “Shadowing”:  Fail-safe active hazard detection and safing can be used where a higher
tier processor can monitor a lower tier processor and shut down the lower processor in 
the event that pre-defined allowable conditions are violated.   Higher tier processors can 
emulate the application running in the lower tier, and compare predicted (expected) 
parameter values to actual measured values.   This technique is sometimes called 
“shadowing” or convergence testing.

2) “Built-in Test( BIT)”:   Sometimes FDIR can be based on self-test (BIT) of lower tier 
processors where lower level units test themselves, and report their good/bad status to a 
higher processor. The higher processor switches out units reporting a failed or bad status.

If too many faults or very serious failures occur, it may be necessary for the system to shut itself
down in an orderly, safe manner.  (For example, in the event of a power outage the system might
continue for a short period of time on limited battery power during which period the software
should commence an orderly shutdown to a safe state).

Software responses to off-nominal scenarios should address safety considerations, and be
appropriate to the situation.   Complete system shutdown may not be appropriate in many cases.
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How to achieve independence and other failure tolerance development methods are discussed
more in Section 4.3 Architectural Design Phase.

4.2.2.2  Hazardous Commands

Appendix-A.2 Glossary of Terms defines a “hazardous command”.   Commands can be internal
to a software set (e.g.,  from one module to another) or external, crossing an interface to/from
hardware or a human operator.  Longer command paths increase the probability of an undesired
or incorrect command response due to noise on the communications channel, link outages,
equipment malfunctions, or (especially) human error.

Reference [26] NSTS 1700.7B section 218 defines “hazardous command” as “...those that can
remove an inhibit to a hazardous function, or activate an unpowered payload system”.   It
continues to say “Failure modes associated with payload flight and ground operations including
hardware, software, and procedures used in commanding from payload operations control centers
(POCC’s) and other ground equipment must be considered in the safety assessment to determine
compliance with the (failure tolerance) requirements.......NSTS 19943 treats the subject of
hazardous commanding and presents the guidelines by which it will be assessed.”

NSTS 1700.7B section 218 focuses on remote commanding of hazardous functions, but the
principles, can and should be, generally applied.  Both NSTS  19943 and  EWRR 127-1 (Para
3.16.7 b) recommend and require respectively, two-step commanding.  EWRR 127-1 states “Two
or more unique operator actions shall  be required to initiate any potentially hazardous function
or sequence of functions.   The actions shall be designed to minimize the potential for inadvertent
actuation”.  Note that two-step commanding is in addition to any hardware (or software) failure
tolerance requirements, and is neither necessary nor sufficient to meet failure tolerance
requirements.   A two-step command does NOT constitute an inhibit.  (See Glossary Appendix
A.2 for definition of inhibit.)

Software interlocks or preconditions can be used to disable certain commands during particular
mission phases or operational modes.  However, provision should be made to provide access to
(i.e. enable) all commands in the event of unexpected emergency situations.   Emergency
command access is generally required by flight crews.  The USS Thresher submarine was lost
with all hands due to a hardware interlock preventing engine start-up without preheat.   During
the Apollo-13 mission many unplanned command sequences and procedures were developed in-
flight to overcome the emergency situation.  For example, the nominal Lunar Module power up
sequence timeline could not be completed before the Command Module battery power expired,
so a different (shorter) sequence was used.

4.2.2.3  Coding Standards

Coding Standards, a class of generic software requirements, are, in practice, “safe” subsets of
programming languages.  These are needed  because most compilers can be unpredictable in how
they work. For example, dynamic memory allocation is predictable. In applications where some
portions of memory are safety critical, it is important to control which memory elements are
assigned in a particular compilation process;  the defaults chosen by the compiler might be
unsafe.    Some attempts have been made at developing coding safety standards (safe subsets).
These are further discussed later in Section 4.5 Software Implementation (page 62).
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4.2.2.4  Timing, Sizing and Throughput Considerations

System design should properly consider real-world parameters and constraints,  including human
operator and control system response times, and flow these down to software.  Adequate margins
of capacity should be provided for all these critical resources.

This section provides guidance for developers in specifying software requirements to meet the
safety objectives.   Subsequent analysis of software for Timing, Throughput and Sizing
considerations is discussed in  Section 5.1.5.

Time to Criticality : Safety critical systems sometimes have a characteristic “time to criticality”,
which is the time interval between a fault occurring and the system reaching an unsafe state.
This interval represents a time window in which automatic or manual recovery and/or safing
actions can be performed, either by software, hardware, or by a human operator.   The design of
safing/recovery actions should fully consider the real-world conditions and the corresponding
time to criticality.  Automatic safing can only be a valid hazard control if there is ample margin
between worst case (long) response time and worst case (short) time to criticality.

Automatic safing is often required if the time to criticality is shorter than the realistic human
operator response time, or if there is no human in the loop.  This can be performed by either
hardware or software or a combination depending on the best system design to achieve safing.

Control system design can define timing requirements.  Based on the established  body of
classical and modern dynamic control theory, such as dynamic control system design,  and
multivariable design in the s-domain (Laplace transforms) for analog continuous processes.
Systems engineers are responsible for overall control system design.   Computerized control
systems use sampled data (versus continuous data).   Sampled analog processes should make use
of  Z-transforms to develop difference equations to implement the control laws.   This will also
make most efficient use of real-time computing resources.[1]

Sampling rates should be selected with consideration for noise  levels and expected variations of
control system and physical parameters.   For measuring signals which are not critical, the sample
rate should be at least twice the maximum expected signal frequency to avoid aliasing.   For
critical signals, and parameters used for closed loop control, it is generally accepted that the
sampling rate must be much higher, at least a factor of ten above the system characteristic
frequency is customary.[1]

Dynamic memory allocation: ensure adequate resources are available to accommodate usage of
dynamic memory allocation, without conflicts.  Identify and protect critical memory blocks.
Poor memory management  has been a leading factor in several critical failures.

Memory Checking:  Self test of memory usage can be as part of BIT/self-test to give advance
warning of imminent saturation of memory.

Quantization: Digitized systems should select wordlengths long enough to reduce the  effects of
quantization  noise to ensure stability of the system [10].  Selection of wordlengths and floating
point coefficients should be appropriate with regard to the parameters being processed in the
context of the overall control system.   Too short wordlengths can result in system instability and
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misleading readouts.   Too long wordlengths result in excessively complex software and heavy
demand on CPU resources, scheduling and timing conflicts etc..

Computational Delay:  Computers take a finite time to read data and to calculate and output
results, so some control parameters will always be out of date.   Controls systems must
accomodate this. Also, check timing clock reference datum, synchronization and accuracy (jitter).
Analyze task scheduling (e.g.,  with Rate Monotonic Analysis (RMA)).

4.2.3 Structured Design Techniques

It is generally agreed that structured design techniques greatly reduce the number of errors,
especially requirements errors which are the most expensive to correct and may have the most
impact on the overall safety of a system.  These Structured Analysis and Design methods for
software have been evolving over the years, each with its approach to modeling the needed world
view into software.  The most recent analysis/design methods are Object Oriented Analysis &
Design (OOA & OOD) and Formal Methods.  To date, the most popular analysis methods have
been Functional Decomposition,  Data Flow (or Structured Analysis),  and  Information
Modeling.   OOA actually incorporates some of the techniques of all of  these within its method,
at lower levels, once the system is cast into objects  with attributes and services.  In the following
discussion, “analysis“ is considered as a process for evaluating a problem space (a concept or
proposed system) and rendering  it into requirements that reflect the needs of the customer.

Functional Decomposition has been, and still is, a popular method for representing a system.
Functional Decomposition focuses on what functions, and sub-functions,  the system needs to
perform and the interfaces between those functions.  The general complaints with this method are
that  1) the functional capability is what most often changes during the design lifecycle and is
thus very volatile, and  2) it is often hard to see the connection between the proposed system as a
whole and the functions determined to create that system.

Structured Analysis (DeMarco [34], Yourdon [33]) became popular in the 1980’s and is still used
by many.    The analysis consists of  interpreting  the system concept (or real world) into data and
control terminology, that is into data flow diagrams.    The flow of data and control from bubble
to data store to bubble can be very hard to track and the number of bubbles can get to be
extremely large.  One approach is to first define events from the outside world that require the
system to react, then assign a bubble to that event, bubbles that need to interact are then
connected until the system is defined.  This can be rather overwhelming and so the bubbles are
usually grouped into higher level bubbles.  Data Dictionaries are needed to describe the data and
command flows and a process specification is needed to capture the transaction/transformation
information.  The problems have been: 1) choosing bubbles appropriately, 2)  partitioning those
bubbles in a meaningful and mutually agreed upon manner,  3) the size of the documentation
needed to understand the Data Flows,  4) still strongly functional in nature and thus subject to
frequent change,  5) though “data” flow  is emphasized,  “data” modeling is not, so there is little
understanding of  just what the subject matter of the system is about, and 6)  not only is it hard
for the customer to follow how the concept is mapped into these data flows and bubbles, it has
also been very hard for the designers who must shift the DFD organization into an implementable
format.
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Information Modeling, using entity-relationship diagrams, is really a forerunner for OOA.  The
analysis first finds objects in the problem space, describes them with attributes, adds
relationships, refines them  into super and sub-types and then defines associative objects.  Some
normalization then generally occurs.  Information modeling is thought to fall short of true OOA
in that, according to Peter Coad & Edward Yourdon [37],   1) services, or processing
requirements, for each object are not addressed, 2) inheritance is not specifically identified, 3)
poor interface structures (messaging) exists between objects, and 4) classification and assembly
of the structures are not used as the predominate method for determining the system’s objects.

This guidebook will present in more detail the two new most  promising methods of structured
analysis and design, Object-Oriented and Formal Methods (FM).  OOA/OOD and FM can
incorporate the best from each of the above methods and can be used effectively in conjunction
with each other.

Lutz and Ampo [27] described their successful experience of using OOD combined with Formal
Methods as follows:

 “ For the target applications, object-oriented modeling offered several advantages as an initial
step in developing formal specifications.  This reduced the effort in producing an initial formal
specification.   We also found that the object-oriented models did not always represent the
“why,” of the requirements, i.e., the underlying intent or strategy of the software.   In contrast, the
formal specification often clearly revealed the intent of the requirements.”

4.2.3.1 Object Oriented Analysis and Design

Object Oriented Design (OOD) is gaining increasing acceptance worldwide. OOD methods
include those of Coad-Yourdon, Shlaer-Mellor, Rumbaugh, and Booch methods.   These fall
short of full Formal Methods because they generally do not include logic engines or theorem
provers.   But they are more widely used than Formal Methods, and a large infrastructure of tools
and expertise is readily available to support practical OOD usage.

OOA/OOD is the new paradigm and is viewed by many as the best solution to most problems.
Some of the advantages of modeling  the real world into objects is that 1) it is thought to follow a
more natural human thinking process and 2)  objects, if properly chosen, are the most stable
perspective of the real world problem space and can be more resilient to change as the
functions/services and data & commands/messages are isolated and hidden from the overall
system.   For example, while over the course of the development lifecycle the number, as well as
types, of functions (e.g. turn camera 1 on,  download sensor data, ignite starter,  fire engine 3,
etc.)  may change,  the basic objects (e.g. cameras, sensors, starter, engines,  operator,  etc.)
needed to create a system usually are constant.  That is, while there may now be three cameras
instead of two, the new Camera-3 is just an instance of the basic object ‘camera’.  Or while an
infrared camera may now be the type needed, there is still a ‘camera’ and the differences in
power, warm-up time,  data storage may change, all that is kept isolated (hidden) from effecting
the rest of the system.

OOA incorporates  the principles of  abstraction, information  hiding,  inheritance, and  a method
of organizing the problem space  by  using  the three most “human” means of classification.
These combined principles, if properly applied,  establish a more modular, bounded, stable and
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understandable software system. These aspects of OOA should make a system created under this
method more robust and less susceptible to changes,  properties which help create a safer
software system design.

Abstraction refers to concentrating on only certain aspects of a complex problem, system, idea or
situation  in order to better comprehend that portion.  The perspective of the analyst  focuses on
similar characteristics of  the system objects that are most important to them.  Then, at a later
time, the analyst can address other objects and their desired attributes or  examine the details of
an object and deal with  each in more depth.   Data abstraction is used by OOA to create the
primary organization for thinking and specification in that the objects are first selected  from a
certain perspective and then each  object is defined in detail.   An object  is defined by the
attributes it has and the functions it performs on those attributes.  An abstraction can be viewed ,
as per Shaw [38], as “a simplified description, or specification, of a system that emphasizes some
of the system’s details or properties while suppressing others.  A  good abstraction is one that
emphasizes details that are significant to the reader or user and suppresses details that are, at least
for the moment, immaterial or diversionary”.

Information hiding also helps manage complexity in that it allows encapsulation of  requirements
which might be subject to change.  In addition, it helps to isolate the rest of the system from
some  object specific design decisions.  Thus, the rest of the s/w system sees only what is
absolutely necessary  of  the inner workings of  any object.

Inheritance “ defines a relationship among classes [objects], wherein one class shares the
structure or behavior defined in one or more classes... Inheritance thus represents a hierarchy of
abstractions,  in which a subclass [object] inherits from one or more superclasses [ancestor
objects].  Typically, a subclass augments or redefines the existing structure and behavior of its
superclasses” [39].

Classification theory states that humans normally organize their thinking by:

• looking at an object and comparing its attributes to those experienced before (e.g. looking at a
cat, humans tend to think of its size, color, temperament, etc.  in relation to past experience
with cats)

• distinguishing between an entire object and its component parts (e.g.  a rose bush verses its
roots, flowers, leaves, thorns, stems, etc.)

• classification of objects as distinct and separate groups (e.g. trees, grass,  cows,  cats,
politicians)

In OOA,  the first organization is to take the problem space and render it into objects and their
attributes (abstraction).  The second step of organization is into Assembly Structures,  where an
object and its parts are considered. The third form of organization of the problem space is into
Classification Structures during which the problem space is examined for generalized and
specialized instances of objects (inheritance).  That is, if looking at a railway system the objects
could be engines (provide power to pull cars), cars (provide storage for cargo), tracks (provide
pathway for trains to follow/ride on), switches (provide direction changing), stations (places to
exchange cargo), etc.  Then you would look at the Assembly Structure of cars and determine
what was important about their pieces parts, their wheels, floor construction, coupling
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mechanism, siding, etc.  Finally, Classification Structure of  cars could be into cattle, passenger,
grain,  refrigerated,  and  volatile liquid cars.

The purpose of all this classification is to provide modularity which partitions the system into
well defined boundaries that can be individually/independently understood, designed, and
revised.   However,  despite “classification theory”, choosing what objects represent a system is
not always that straight forward.  In addition, each analyst or designer will have thier own
abstraction, or view of the system which must be resolved.  Shlaer and Mellor [40],  Jacobson
[41], Booch [39], and Coad and Yourdon [37] each offer a different look at candidate object
classes, as well as other aspects of OOA/OOD.  These are all excellent sources for further
introduction (or induction) into OOA and OOD.  OO does provide a structured approach to
software system design and can be very useful in helping to bring about a safer, more reliable
system.

4.2.3.2 Formal Methods - Specification Development

Reference [25] states:  “Formal Methods  (FM) consists of a set of techniques and tools based on
mathematical modeling and formal logic that are used to specify and verify requirements and
designs for computer systems and software.”

While Formal Methods (FM) are not widely used in NASA or US industry,  FM has gained some
acceptance in Europe.  A considerable learning curve must be surmounted for newcomers, which
can be expensive.   Once this hurdle is surmounted successfully, some users find that it can
reduce overall development lifecycle cost by eliminating many costly defects prior to coding.

Detailed descriptions of Formal methods are given in the NASA Formal Methods Guidebook
[25].
In addition, the following publications are recommended reading as primers in Formal Methods:
Rushby [29], Miller, et al [30], and Butler, et al [31].

The following descriptions of Formal Methods are taken from the NASA Langley FM Group
internet World Wide Web home page:

                   WHY IS FORMAL METHODS NECESSARY?

 A digital system may fail as a result of either physical component  failure, or design errors. The
validation of an ultra-reliable system  must deal with both of these potential sources of error.

 Well known techniques exist for handling physical component failure;  these techniques use
redundancy and voting.  The reliability assessment  problem in the presence of physical faults is
based upon Markov modeling techniques and is well understood.

 The design error problem is a much greater threat. Unfortunately, no  scientifically justifiable
defense against this threat is currently  used in practice. There are 3 basic strategies that are
advocated for  dealing with the design error:

1. Testing (Lots of it)

2. Design Diversity (i.e. software fault-tolerance: N-version programming, recovery blocks,
etc.)
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3. Fault/Failure Avoidance (i.e. formal specification/verification, automatic program
synthesis, reusable modules)

The problem with life testing is that in order to measure  ultrareliability one must test for
exorbitant amounts of time. For  example, to measure a 10-9 probability of failure for a 1 hour
mission one must test for more than 114,000 years.

Many advocate design diversity as a means to overcome the limitations  of testing. The basic idea
is to use separate design/implementation  teams to produce multiple versions from the same
specification. Then,  non-exact threshold voters are used to mask the effect of a design  error in
one of the versions. The hope is that the design flaws will  manifest errors independently or
nearly so.

By assuming independence one can obtain ultra-reliable-level estimates  of reliability even
though the individual versions have failure rates  on the order of 10-4 . Unfortunately, the
independence assumption  has been rejected at the 99% confidence level in several experiments
for low reliability software.

Furthermore, the independence assumption cannot ever be validated for  high reliability software
because of the exorbitant test times  required. If one cannot assume independence then one must
measure  correlations. This is infeasible as well---it requires as much  testing time as life-testing
the system because the correlations must  be in the ultra-reliable region in order for the system to
be  ultra-reliable. Therefore, it is not possible, within feasible amounts  of testing time, to
establish that design diversity achieves  ultra-reliability. Consequently, design diversity can
create an  illusion of ultra-reliability without actually providing it.

It is felt that formal methods currently offers the only  intellectually defensible method for
handling the design fault  problem. Because the often quoted 1 - 10-9 reliability is well  beyond
the range of quantification, there is no choice but to develop  life-critical systems in the most
rigorous manner available to us,  which is the use of formal methods.

WHAT IS FORMAL METHODS?

Traditional engineering disciplines rely heavily on mathematical  models and calculation to make
judgments about designs. For example,  aeronautical engineers make extensive use of
computational fluid  dynamics (CFD) to calculate and predicte how particular airframe  designs
will behave in flight. We use the term formal methods to refer to the variety of mathematical
modeling techniques that are  applicable to computer system (software and hardware) design.
That is,  formal methods is the applied mathematics engineering and, when  properly applied, can
serve a role in computer system design analogous  to the role CFD serves in aeronautical design.

Formal methods may be used to specify and model the behavior of a system  and to
mathematically verify that the system design and implementation satisfy system functional and
safety properties.  These specifications,  models, and verifications may be done using a variety of
techniques  and with various degrees of rigor. The following is an imperfect, but useful,
taxonomy of the degrees of rigor in formal methods:
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Level-1: Formal specification of all or part of the system.

Level-2: Formal specification at two or more levels of abstraction and paper and pencil 
proofs that the detailed specification implies the more abstract specification.

Level-3: Formal proofs checked by a mechanical theorem prover.

Level 1 represents the use of mathematical logic or a specification  language that has a formal
semantics to specify the system. This can  be done at several levels of abstraction. For example,
one level might  enumerate the required abstract properties of the system, while  another level
describes an implementation that is algorithmic in  style.

Level 2 formal methods goes beyond Level 1 by developing  pencil-and-paper proofs that the
more concrete levels logically imply  the more abstract-property oriented levels. This is usually
done in  the manner illustrated below.

Level 3 is the most rigorous application of formal methods. Here one  uses a semi-automatic
theorem prover to make sure that all of the  proofs are valid. The Level 3 process of convincing a
mechanical  prover is really a process of developing an argument for an ultimate  skeptic who
must be shown every detail.

Formal methods is not an all-or-nothing approach. The application of  formal methods to only the
most critical portions of a system is a  pragmatic and useful strategy. Although a complete formal
verification  of a large complex system is impractical at this time, a great  increase in confidence
in the system can be obtained by the use of  formal methods at key locations in the system.

4.2.4 Formal Inspections of Specifications

Formal inspections and formal analysis are different. Formal inspections are otherwise known as
Fagan Inspections, named after John Fagan of IBM who devised the method.  NASA has
published a standard and guidebook for implementing the Formal Inspection (FI) Process,
Software Formal Inspections Standard (NASA-STD-2202-93) [36] and Software Formal
Inspections Guidebook (NASA-GB-A302) [25].  FIs should be performed within every major
step of the software development process.

Formal Inspections, while valuable within each design phase or cycle, have the most impact
when applied early in the life of a project, especially the requirements specification and definition
stages of a project. Studies have shown that the majority of all faults/failures, including those that
impinge on safety, come from missing or misunderstood requirements.  Formal Inspection,
greatly improves the communication within a project and enhances understanding of the system
while scrubbing out many of the major errors/defects.

For the FI of software requirements, the inspection team should include representatives from
Systems Engineering, Operations, Software Design and Code, Software Product Assurance,
Safety, and any other system function that software will control or monitor.  It is very important
that software safety be involved in the FIs.

It is also very helpful to have inspection checklists for each phase of development that reflect
both generic and project specific criteria. The requirements discussed in this section and in
Robyn R. Lutz's paper "Targeting Safety-Related Errors During Software Requirements
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Analysis" [42] will greatly aid in establishing this checklist.  Also, the checklists provided in the
NASA Software Formal Inspections Guidebook are helpful.

The method of reporting finding from FI’s is described in references [25] and [36].   In addition
to those formats, the software safety engineer might also find it useful to record safety related
findings in the format shown in
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4.3 Architectural Design Phase
The design of a program set represents the static and dynamic characteristics of the
software that will meet the requirements specified in the governing SRD.  Projects
developing large amounts of software may elect to separate design development into
separate phases, preliminary (architectural) and detailed/critical.  Those with relatively
small software packages may combine them into one phase.

4.3.1 Safety Objectives of Architectural Design

The main safety objective of the architectural design phase is to define the strategy for
achieving the required level of failure tolerance in the different parts of the system.   The
degree of failure tolerance required can be inversely related to the degree of fault
reduction used, (e.g. Formal Methods).  However, even the most rigorous level of fault
reduction will not prevent all faults, and some degree of failure tolerance is generally
required.

Ideas, techniques, and approaches to be used during architectural design are as follows:

Modularity
In addition, during this phase the software is usually be partitioned into modules, and the
number of safety critical modules should be minimized.  Interfaces between critical
modules should also be designed for minimum interaction (low coupling).

Traceability
Requirements previously developed must be flowed down into the architecture, and be
traceable.

Independence/Failure Tolerance
Despite the difficulty to proving software independence, some NASA programs continue
to use this approach.   As discussed earlier in section  4.2.2.1  Fault and Failure
Tolerance/Independence, two types of independence are often required; first to prevent
fault propagation and second to achieve failure tolerance.

To achieve failure tolerance for safety critical MWFs and MNWFs, certain Safety
Critical Computer Software Components (SCCSCs) must be independent of each other,
this usually means on different hardware hosts.

MNWF : For two in-series inhibits to be independent, no single failure, human mistake,
event or environment  may activate both inhibits.   For three series inhibits to be
independent, no two failures, human mistakes, events or environments (or any
combination of two single items) may activate all three inhibits.  Generally this means
that each inhibit must be controlled by a different processor with different software (N-
version programming, see below).

MWF :  For two parallel strings to be independent, no single failure may disable both
strings.   For three parallel strings, no two failures may disable all three strings. In
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software, N-version programming is preferred in safety critical parallel strings, (i.e., each
string is implemented using uniquely developed code).

Depending on the design, architectural techniques may include:

Convergence testing

Majority voting

Fault containment regions

N-Version programming

Recovery blocks

Resourcefulness

Abbott-Neuman Components

Self-Checks.

These are discussed in more detail below.

For non-discrete continuously varying parameters which are safety critical, a useful
redundancy technique is convergence testing or “shadowing”.   A higher level process
emulates lower level process(es) to predict expected performances and decide if failures
have occurred in the lower level processes.  The higher level process implements
appropriate redundancy switching when it detects a discrepancy.   Alternatively the higher
level process can switch to a subset or degraded functional set to perform minimal
functions when insufficient redundancy remains to keep the system fully operational.

Some redundancy schemes are based on majority voting .  This technique is especially
useful when the criteria for diagnosing failures are complicated. (e.g. when an unsafe
condition is defined by exceeding an analog value rather than simply a binary value).
Majority voting requires more redundancy to achieve a given level of failure tolerance, as
follows: 2 of 3 achieves single failure tolerance; 3 of 5 achieves two failure tolerance.  An
odd number of parallel units are required to achieve majority voting.

FAULT PROPAGATION  is a cascading of a software (or hardware or human) error
from one module to another.  To prevent fault propagation within software, SSCSCs
must be fully independent of non-safety critical components and be able to either detect
an error within itself and not allow it to be passed on or the receiving module must be
able to catch and contain the error.

One approach is to establish "Fault Containment Regions" (FCRs) to prevent
propagation of software faults.  This attempts to prevent fault propagation such as: from
non-critical software to SCCSCs; from one redundant software unit to another, or from
one SCCSC to another.  Techniques known as "firewalling" or partitioning should be
used to provide sufficient isolation of FCRs  to prevent hazardous fault propagation.

FCRs are best partitioned or firewalled by hardware.  Leveson (Section 3, Reference [2] )
states that “logical” firewalls can be used to isolate software modules, such as isolating an



NASA-GB-1740.13-96 58

application from an operating system.  To some extent this can be done using defensive
programming techniques and internal software redundancy.  (e.g., using authorization
codes, or cryptographic keys).  However, within NASA this is normally regarded as
hazard mitigation, but not hazard control, because such software/logical safeguards can
be defeated by hardware failures or EMI/Radiation effects.

A typical method of obtaining independence between FCRs is to host them on different/
independent hardware processors.  Sometimes it is acceptable to have independent FCRs
hosted on the same processor depending on the specific hardware configuration.  For
example, if the FCRs are stored in separate memory chips and they are not simultaneously
or concurrently multi-tasked in the same  Central Processing Unit (CPU) at the same
time.

Methods of achieving independence are discussed in more detail in Reference [1], "The
Computer Control of Hazardous Payloads", NASA/JSC/FDSD, 24 July 1991.  FCRs are
defined in reference [2], SSP 50038 Computer Based Control System Safety
Requirements - International Space Station Alpha.

N-Version Programming:

Reference [26],  NSTS 1700.7B 201.1e(1) stipulates the following:

 “A computer system shall be considered zero failure tolerant in controlling a hazardous
system (i.e., a single failure will cause loss of control), unless the system utilizes
independent computers, each executing uniquely developed instruction sequences to
provide the remaining two hazard controls”.

This stipulation effectively mandates the use of N-Version programming in any attempt to
achieve failure tolerance, at least for payloads on the NSTS.  Reference [2], Section 7.3.1,
discusses in more detail the JSC position on N-Version programming.   They recognize
that the technique has limitations.   Many professionals regard N-Version programming
as ineffective, or even counter productive.

Efforts to implement N-Version programming should be carefully planned and managed
to ensure that valid independence is achieved.  In practice applications of N-Version
programming on NSTS payloads are limited to small simple functions.  However, the
NSTS power up of the engines has N-Version programming as well.

Note that, by the NSTS 1700.7B stipulation, two processors running the same operating
system are neither independent nor failure-tolerant of each other, regardless of the degree
of N-Version programming used in writing the applications.

References [2] and [11] give some useful background for N-Version programming, and
also for:
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Recovery blocks
 Resourcefulness

Abbott-Neuman Components
Self-Checks

In recent years, increasing controversy has surrounded the use of N-Version
programming.   In particular, Knight and Leveson [13] have jointly reported results of
experiments with N-Version programming, claiming the technique is largely ineffective.
Within NASA, Butler and Finelli [28] have also questioned the validity of N-version
programming, even calling it “counter productive”.  However, it has worked very
effectively on some occassions.  Like any tool or method it must be implemented properly
to produce the desired results

4.3.2 Selection of COTS and Reuse

During the architectural design phase, and even earlier, decisions are made to select
COTS (Commercial Off The Shelf Software) or to reuse applications developed from
other similar projects.

COTS is commonly used for operating systems, and processor microcode and devices
because it is becoming prohibitively expensive to custom develop software for these.
There is also a strong trend in government to use commercial products, instead of custom
developing similar but much more expensive products.

Very little has been done to verify the safety of COTS, and most COTS items are
“unknown” in terms of their safety integrity (i.e. there is typically no development or
analysis documentation).  Good prior history can be a positive indication of COTS
dependability, but is not definitive.  Another indication of quality is if the COTS vendor
is registered under ISO 9000.   However, ISO 9000 certified companies sometimes
produce poor quality products; ISO 9000 certifies processes, not products.

The  Software Egnineering Institute (SEI) at Carnegie Mellon University (CMU) has
established a Capability Maturity Model (CMM) which defines 5 levels of maturity for
software development organizations.   Level-5 being the  highest maturity and Level-1 the
lowest.   This method of classifying organizations is becoming widely accepted, and can
be useful when assessing a COTS provider.

An independent COTS certification authority would be highly desirable, but so far does
not exist.

There have recently been some well publicized defects in COTS on the open market.
Use of COTS in safety critical systems is an area of particular concern.

Non-COTS software products (i.e. government developed), are sometimes reused and
adapted for new projects.   There is a need for certification and verification of libraries
intended for reuse.

Features to consider when selecting a real-time embedded operating
system.
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Almost every application is unique, and there is no simple universal set of criteria.  The
following suggestions are fairly commonly encountered issues.

a) Memory management:  operating systems which support a dedicated
hardware MMU (Memory Management Unit) are superior.  This guarantees
protection of designated memory space.  In a multi-tasking application it
ensures the integrity of memory blocks dedicated to individual tasks,
ensuring that tasks do not write into each others' memory space.  It protects
each task from errors such as  bad pointers in other tasks.

b) Determinism: this is the ability of the operating system to:

Meet deadlines,

Minimize jitter, i.e. variations in time stamping instants, the difference
between the actual and believed time instant of a sample,

Remain steady under dynamic occurrences, e.g. off nominal occurrences,

Bounding of priority inversion.

c) Priority inversion is a temporary state used to resolve priority conflicts, a low
priority task is temporarily assigned a higher level priority to ensure its
orderly completion prior to releasing a shared resource requested by a higher
priority task.  The priority change occurs when the higher priority task raises
a "semaphore" flag.  It is vital that the lower priority task releases its shared
resource before delay of the higher priority task causes a system problem.
The period of temporary increase of priority is called the "priority inversion"
time.   Priority inversion time can be defined by the application.

d) Speed - more specifically, the context switching time.  This control can be
"full" or "lightweight".

e) Interrupt latency - how fast an interrupt can be serviced.

f) Method of scheduling:

this can be predetermined logical sequences  (verified by Rate Monotonic
Analysis), or

it can be priority based preemptive scheduling in a multi-tasking
environment, or

"Round Robin" time slice scheduling at the same priority for all tasks.

g) POSIX compliance (1003.1b/c).   This is a standard used by many operating
systems to permit transportability of applications between different operating
systems.

h) Support for synchronization and communication between tasks.
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I) Support for tools such as debuggers, ICE (In Circuit Emulation) and
multiprocessor debugging.  Ease of use, cost and availability of tools.

j) Support for multi-processor configuration (multiple CPUs) if required.

k) Address the language in which the operating system kernel is written, using
the same criteria as selecting application programming languages.
Unfortunately, most operating systems (and other COTS) are written in C or
C++ which are inherently unsafe languages.

4.4 Detailed Design Phase
The following tasks during the detailed design phases should support software safety
activities.

Program Set Architecture

Show positions and functions of safety-critical modules in design hierarchy.

Identify interfaces of safety-critical components.

Identify hazardous operations scenarios.

Internal Program Set Interfaces

Include information on functional interfaces of safety-critical modules.

Include low level requirements and designs of these interfaces.

Shared Data

Identify databases/data files which contain safety-critical data and all modules which use
them, safety-critical or not.

Document how this data is protected from inadvertent use or changes by non-safety-
critical modules.

Functional Allocation

Document how each safety-critical module can be traced back to original safety
requirements and how the requirement is implemented.

Specify safety-related design and implementation constraints.

Document execution control, interrupt characteristics* , initialization, synchronization,
and control of the modules.  Include any finite state machines.

* For high risk systems, interrupts should be avoided as they may interfere with software safety
controls developed especially for a specific type of hazard.   Any interrupts used should be
priority based.

Error Detection and Recovery

Specify any error detection or recovery schemes for safety-critical modules.
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Include response to language generated exceptions; also responses to unexpected external
inputs, e.g. inappropriate commands, or out-of-limit measurements.

Inherited or Reused Software and COTS

Describe the results of hazard analyses performed on COTS or inherited or reused
software.

Ensure that  adequate documentation exists on all software where it is to be used in
critical applications.

Design Feasibility, Performance, and Margins

Show how the design of safety-critical modules is responsive to safety requirements.
Include information from any analyses of prototypes or simulations.  Define design
margins of these modules.

Integration

Specify any integration constraints or caveats resulting from safety factors.

Show how safety controls are not compromised by integration efforts.

Interface Design

For each interface specify a design that meets the safety requirements in  the ICD, SIS
document of equivalent.    Minimize interfaces between critical modules.   Identify safety-
critical data used in interfaces.

Modularity

New modules and sub-modules shall be categorized as safety critical or not.

Traceability

For each of the above, identify traceability to safety requirements.

Testing

Identify test and/or verification methods for each safety critical design feature in this
software test plans and procedures.  Results of preliminary tests of prototype code should
be evaluated and documented in the Software Development Folders (SDFs).  Any Safety
Critical findings should be reported to the Safety Engineer to help work out any viable
solutions.

4.5 Software Implementation
It is during software implementation (coding) that software controls of safety hazards are
actually implemented.  Safety requirements have been passed down through designs to
the coding level.  Managers and designers must communicate all safety issues relating to
the program sets and code modules they assign to programmers.  Safety-critical designs
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and coding assignments should be clearly identified.  Programmers must recognize not
only the explicit safety-related design elements but should also be cognizant of the types
of errors which can be introduced into non-safety-critical code which can compromise
safety controls.   Coding checklists should be provided to alert for these common errors.
This is discussed in the next section.

4.5.1 Coding Checklists

Coding checklists should be used by software developers in software coding and
implementation.

The coding checklists should be generated by an overall ongoing Specification Analysis
activity which began in the requirements phase, (see Section 5.1.3).  Checklists should
contain questions that can serve as reminders to programmers to look for common
defects.

Safety Checklists
During this phase, software safety checklists should be used to verify that safety
requirements identified earlier in the design process (as described in previous Section
4.2.1 DEVELOPMENT OF SOFTWARE SAFETY REQUIREMENTS have, in fact,
been flowed into the software detailed design.

Updating requirements
Often during this development phase, missing requirements are identified, or new system
requirements are added and flowed down to software, such as fault detection and
recovery.   It may become apparent that various capabilities were assumed, but not
explicitly required, so were not implemented.   Checklists can help identify these missing
requirements.   Once missing requirements are identified they must be incorporated by
“back-filling” (updating) the requirements specifications prior to implementation in order
to maintain proper configuration control.  This is less likely to be necessary if Formal
Methods or Formal Inspections are used, at least during the requirements phase.

4.5.2 Coding Standards

Software implementation should comply with coding standards. A formal inspection
should verify that the standards and checklists were followed.  The software developers
should use proper, safe subsets of programming languages as described in Section 5.3.11.

Defensive Programming
Hazards can be mitigated (but not controlled) using defensive programing techniques.
This incorporates a degree of fault/failure tolerance into the code, sometimes by using
software redundancy or stringent checking of input and output data and commands.
However, software alone cannot achieve true system redundancy and failure tolerance.
Appropriately configured hardware is necessary.

An example of defensive programming is sometimes called “come from” checks.
Critical routines have multiple checks in them to test whether they should be executing at
some particular instant.  One method is for each preceding process to set a flag in a word.
If all the proper criteria are met then the routine in question is authorized to execute.
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4.5.3 Unit Level Testing

Software Integration and Test is discussed below in Section 4.6.  Unit level testing begins
during the software implementation phase.  This is because units and modules often
cannot be thoroughly tested during integration because individual module lever inputs
and outputs are no longer accessible.  Unit level testing can identify implementation
problems which require changes to the software.  For these reasons, unit level testing
must be mostly completed prior to software integration.

4.6  Software Integration and Test
Software testing verifies analysis results, investigates program behavior, and confirms
that the program complies with safety requirements. Testing is the operational execution
of a software component in a real or simulated environment.  It is prudent to test first in a
simulated environment, before connecting the computer to hazardous actuators such as
rocket engines or ordnance.  This testing, conducted in accordance with the safety test
plan and procedures, will verify that the software meets safety requirements. Normally,
the software developer's testing ensures that the software performs all required functions
correctly. Safety testing focuses on locating program weaknesses and identifying extreme
or unexpected situations that could cause the software to fail in ways that would violate
safety requirements. Safety testing complements rather than duplicates developer testing.
Fault injection has been successfully used to test critical software (e.g. TUV in Germany).
Faults are inserted into code before starting a test and the response is observed.  In
addition, all boundary and performance requirements should be tested at, below and
above the stated limits.  It is necessary to see how the software system performs, or fails,
outside of supposed operational limits.

The safety testing effort should be limited to those software requirements classed as
safety-critical items.  Safety testing can be performed as an independent series of tests or
as an integral part of the developer's test effort.  However, remember that in any software
which impacts, or helps fulfill a safety critical function, is safety critical as well.

Any problems discovered during testing should be analyzed and documented in
discrepancy reports as well as test reports.  This contains a description of the problems
encountered and recommended solutions.

4.6.1  Testing Techniques

Testing should be performed either in a controlled environment in which execution is
controlled and monitored or in a demonstration environment where the software is
exercised without interference.

Controlled testing executes the software on a real or a simulated computer using special
techniques to influence behavior.   Fidelity of the simulators should be carefully assessed.

Demonstration testing executes the software on a computer and in an environment
identical to the operational computer and environment.
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Safety testing exercises program functions under both nominal and extreme conditions.
Safety testing includes nominal, stress, performance and negative testing.

Configuration Management should act as the sole distributor of media and documentation
for all acceptance tests and for delivery to [sub]system integration and testing.

Software Test Plan

The Software Test Plan, should incorporate software safety information in the following test
activities:

Unit and Integration Testing:  Identify tests for safety-critical interfaces.
Demonstrate how they cover the safety test requirements (see Section  4.6.2  below).
Specify pass/fail criteria for each safety test.  Specify safety constraints and dependencies
on other test sets.  Describe review and reporting process for safety-critical components.
List test results, problems, and liens.

Acceptance Testing:  Specify acceptance test for safety-critical components.
Demonstrate how tests cover the safety requirements in the SRD.  Specify pass/fail
criteria.  Specify any special procedures, constraints, and dependencies for implementing
and running safety tests.  Describe review and reporting process for safety-critical
components.  List test results, problems, and liens.

Software Test Reports

The Software Test Reports should incorporate software safety information in the
following sections:

Unit Testing Results:  Report test results in Software Development Folders.

Integration Test Reports:  Report results of testing safety-critical interfaces versus the
requirements outlined in the Software Test Plan.

Acceptance Testing:  Report results of testing safety-critical components versus the
requirements outlined in the Software Test Plan.

Any Safety Critical findings should be used to update the hazard reports.

4.6.2  Software Safety Testing

Developers must perform software safety testing to ensure that hazards have been
eliminated or controlled to an acceptable level of risk.  Also, document safety-related test
descriptions, procedures, test cases, and the associated qualifications criteria.
Implementation of safety requirements (inhibits, traps, interlocks, assertions, etc.) shall be
verified.  Verify that the software functions safely both within its specified environment
(including extremes), and under specified abnormal and stress conditions.  For example,
two failure tolerant systems should be exercised in all predicted credible two failure
scenarios.

Software Safety, usually represented by the Software Quality Assurance organization,
should participate in the testing of safety-critical computer software components at all
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levels of testing, including informal testing, system integration testing, and Software
Acceptance testing.

4.6.3 Test Witnessing

Software safety personnel should ensure that tests of safety-critical components are
conducted in strict accordance with the approved test plans, descriptions, procedures,
scripts and scenarios, and that the results are accurately logged, recorded, documented,
analyzed, and reported.  Ensure that deficiencies and discrepancies are corrected and
retested.

In addition to testing under normal conditions, the software should be tested to show that
unsafe states cannot be generated by the software as the result of feasible single or
multiple erroneous inputs.  This should include those outputs which might result from
failures associated with the entry into, and execution of, safety-critical computer software
components.  Negative and No-Go testing should also be employed, and should ensure
that the software only performs those functions for which it is intended, and no
extraneous functions.  Lists of specific tests for safety-critical software can be found in
Section 3.2 TAILORING THE EFFORT - VALUE vs COST in this Guidebook.

Witnessing verifies that the software performs properly and safely during system
integration stress testing, and system acceptance testing.  System acceptance testing
should be conducted under actual operating conditions or realistic simulations.

4.6.4 COTS and GFE Testing

Safety critical Commercial Off The Shelf  software (COTS) included in the system
should be analyzed and tested.  Commercial software includes commercially developed,
commercially acquired, proprietary, reused, inherited and other software not specifically
developed for the system.  These analyses and tests should be performed whether this
software is modified or not.

Note that most computer operating systems are COTS.

Subject any safety-critical Government Furnished (GFE) software, whether modified or
not, to the same software safety analysis and testing requirements as the software that was
developed under the contract which invokes this task.  Existing hazards analyses and test
results of unmodified GFE Software previously used in safety critical systems may be
used as the basis for certification in a new system.   The existing analyses and test reports
should be reviewed for their relevance to the reuse in the new environment.

Correct the software to eliminate or reduce to an acceptable level of risk any safety
hazards discovered during system integration testing or acceptance testing.  The corrected
software must be retested under identical conditions to ensure that these hazards have
been eliminated, and that other hazards do not occur.
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4.7 Software Acceptance and Delivery Phase
Once the software has passed acceptance testing it can be released either as a stand-alone
item, or as part of a larger system acceptance.

An Acceptance Data Package (ADP) should accompany the release of the software.  This
package should include, as a minimum, the following :

• Instructions for installing all safety-critical items.  Define the hardware
environment for which the software is certified.

• Liens:  Identify all safety-related software liens, such as missing design
features, or untested features.

• Constraints:  Describe operational constraints for hazardous activities.  List all
open, corrected but not tested, or uncollected safety-related problem reports.
Describe environmental limitations of use, allowable operational envelope.

• Operational procedures:  Describe all operational procedures and operator
interfaces.  Include failure diagnosis and recovery procedures.

In addition, the ADP should contain the following:

• Certificate of Conformance to requirements, validated by Quality Assurance
Organization, and IV & V Organization (if applicable).

Waivers:  List any waivers of safety requirements.

Program Set Acceptance Test Results:  List results of safety tests.

• New or Changed Capabilities:  List any approved change requests for safety-
critical items.

• Problem Disposition:  List any safety-related problem reports.

• Version Description Document:  Describes as built versions of software
modules to be used with this release of the system.

4.8 Software Operations & Maintenance
Maintenance of software differs completely from hardware maintenance.  Unlike
hardware, software does not degrade or wear out over time, so the reasons for software
maintenance are different.

The main purposes for software maintenance are as follows:

• to correct known defects

• to correct defects discovered during operation

• to add or remove features and capabilities (as requested by customer, user or
operator)
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• to compensate or adapt for hardware changes, wear out or failures.

The most common safety problem during this phase is lack of configuration control,
resulting in undocumented and poorly understood code.  “Patching” is a common
improper method used to  “fix” software “on the fly”.  Software with multiple
undocumented patches has resulted in major problems where it has become completely
impossible to understand how the software really functions, and how it responds to its
inputs.

In some cases, additional software has been added to compensate for unexpected behavior
which is not understood. ( for example, “garbage collectors”).  It is beneficial to
determine and correct the root cause of unexpected behavior, otherwise the software can
“grow” in size to exceed available resources, or become unmanageable.

After software becomes operational, rigorous configuration control must be enforced.
For any proposed software change, it is necessary to repeat all life cycle development and
analysis tasks performed previously from requirements (re-)development through code
(re-)test.  Full original testing is recommended as well as any additional tests for new
features.

It is advisable to perform the final verification testing on an identical offline analog (or
simulator) of the operational software system, prior to placing it into service.
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5.  SOFTWARE SAFETY ANALYSIS
During the software lifecycle, the software safety organization performs various analysis
tasks, employing a variety of techniques.  This section describes techniques which have
been useful in NASA activities and some from elsewhere.   The methodology for each
technique is described, together with the data to be used and products generated in each
case.  Some discussion on the relative cost and value of each technique is provided.
Absolute cost and value metrics are not available in most cases.

Techniques fall into one of two categories:

1) Top down system hazards and failure analyses, defining environment for software
failure tolerance and hazards analyses, ( e.g., hardware/software interactions).

2) Bottom up review of design products to identify and disposition failure modes not
predicted by top down analysis. This will ensure validity of assumptions of top down
analysis, and verify conformance to requirements.

Note that a typical software safety analysis activity will require both types of analyses,
although not every technique described needs to be applied.   Guidance is provided on the
relative costs and merits of each technique to assist in the planning of software safety
activities.

Results of software safety analysis are reported back to the system safety organization.
(For example, new hazards or problems in complying with safety requirements which
might require changes to hardware configuration).

As software controls become more defined, software hazard analyses will identify
individual program sets, modules, units, etc. which are safety-critical.  These analyses
include:

Software Safety Requirements Analysis

Architectural Design Analysis

Code Analysis

Test Analysis

Operations & Maintenance

5.1 Software Safety Requirements Analysis
The requirements analysis activity verifies that safety requirements for the software were
properly flowed down, and that they are correct, consistent and complete.  It also looks for
new hazards, and unexpected software functions.

Bottom up analysis of software requirements are performed such as Requirements
Criticality Analysis to identify possible hazardous conditions.  This results in another



NASA-GB-1740.13-96 70

iteration of the PHA which may generate new software requirements.  Specification
analysis is also performed to ensure consistency of requirements.

5.1.1 Software Safety Requirements Flowdown Analysis 

Safety requirements are flowed down into the system design specifications as described in
Section 4.2.1.1.

An area of concern in the flowdown process is incomplete analysis, and/or inconsistent
analysis of highly complex systems, or use of ad hoc techniques by biased or
inexperienced analysts.  The most rigorous  (and most expensive) method of addressing
this concern is adoption of formal methods for requirements analysis and flowdown,
described previously in  Section 4.2.3.2 Formal Methods - Specification Development.
Less  rigorous and less expensive ways include checklists and/or a standardized structured
approach to software safety as discussed below and throughout this guidebook.

The following sections contain a description of the type of analysis and gives the
methodology by defining the task, the resources required to perform the analysis, and the
expected output from the analyses.

5.1.1.1 Checklists and cross references

Tools and methods for requirements flowdown analyses include checklists and cross
references. A checklist of required hazard controls and their corresponding safety
requirements should be created and maintained.  Then they can be used throughout the
development life cycle to ensure proper flow down and mapping to design, code and test.

Develop a systematic checklist of software safety requirements and any hazard controls,
ensuring they correctly and completely include (and cross reference) the appropriate
specifications, hazard analyses test and design documents.  This should include both
generic and specific safety requirements as discussed in Section 4.2.1.  Section 5.1.4 on
form inspections lists some sources for starting a safety checklist.  Develop a hazard
requirements flowdown matrix which maps safety requirements and hazard controls to
system/software functions and to software modules and components.  Where components
are not yet defined, flow to the lowest level possible and tag for future flowdown.

5.1.2 Requirements Criticality Analysis

Criticality analysis identifies program requirements that have safety implications. A
method of applying criticality analysis is to analyze the hazards of the software/hardware
system and identify those that could present catastrophic or critical hazards. This
approach evaluates each program requirement in terms of the safety objectives derived for
the software component.

The evaluation will determine whether the requirement has safety implications and, if so,
the requirement is designated “safety critical”.  It is then placed into a tracking system to
ensure traceability of software requirements throughout the software development cycle
from the highest level specification all the way to the code and test documentation.   All
of the following techniques are focused on  safety critical software components.
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The system safety organization coordinates with the project system engineering
organization to review and agree on the criticality designations.  At this point the systems
engineers may elect to make design changes to reduce the criticality levels or consolidate
modules reducing the number of critical modules.

At this point, some bottom-up analyses can be performed. Bottom-up analyses identify
requirements or design implementations which are inconsistent with, or not addressed by,
system requirements.  Bottom-up analyses can also reveal unexpected pathways (e.g.,
sneak circuits) for reaching hazardous or unsafe states.   System requirements should be
corrected when necessary.

It is possible that software components or subsystems might not be defined during the
Requirements Phase, so those portions of the Criticality Analysis would be deferred to the
Architectural Design Phase. In any case, the Criticality Analysis will be updated during
the Architectural Design Phase to reflect the more detailed definition of software
components.

The methodology for Requirements Criticality Analysis is as follows:

All software requirements are analyzed  in order to identify additional potential system
hazards that the system  PHA did not reveal and to identify potential areas where system
requirements were not correctly flowed to the software.   Identified potential hazards are
then addressed by adding or changing the system requirements and reflowing them to
hardware, software and operations as appropriate.

At the system level:  identify hardware or software items that receive/pass/initiate critical
signals or hazardous commands (see 4.2.2.2).

At the software requirements level:  identify software functions or objects that
receive/pass/initiate critical signals or hazardous commands.

This safety activity examines the system/software requirements and design to  identify
unsafe conditions for resolution such as out-of-sequence, wrong event, inappropriate
magnitude, incorrect polarity, inadvertent command, adverse environment, deadlocking,
and failure-to-command modes.

The software safety requirements analysis considers such specific requirements as the
characteristics discussed below in 5.1.2.1,Critical Software Characteristics.

The following resources are available for the Requirements Criticality Analysis:

Note: documents in [parentheses] correspond to terminology from DOD-STD-2167 [2].
Other document names correspond to NASA-STD-2100.91.

1) Software Development Activities Plan [Software Development Plan]
Software Assurance Plan [None], Software Configuration Management Plan
[Same] and Risk Management Plan [Software Development Plan].

2) System and Subsystem Requirements [System/Segment Specification
(SSS),  System/Segment Design Document].
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3) Requirements Document [Software Requirements Specifications].

4) External Interface Requirements Document [Interface Requirements 
Specifications] and other interface documents.

5) Functional Flow Diagrams and related data.

6) Program structure documents.

7) Storage and timing analyses and allocations.

8) Background information relating to safety requirements associated with
the contemplated testing, manufacturing, storage, repair, installation, use, and
final disposition of the system.

9) Information from the system PHA concerning system energy, toxic, and
other hazardous event sources, especially ones that may be controlled directly
or indirectly by software.

10) Historical data such as lessons learned from other systems and problem
reports.

Output products are the following:

1. Table 5-1 Subsystem Criticality Matrix

2. UpdatedSafety Requirements Checklist

3. Definition of Safety Critical Requirements.

The results and findings of the Citicality Analyses should be fed to the System
Requirements and System Safety Analyses. For all discrepancies identified, either the
requirements should be changed because they are incomplete or incorrect, or else the
design must be changed to meet the requirements.  The analysis identifies additional
hazards that the system analysis did not include, and identifies areas where system or
interface requirements were not correctly assigned to the software.

The results of the criticality analysis may be used to develop Formal Inspection (FI)
checklists for performing the FI process described later in Formal Inspections of
Specifications

5.1.2.1 Critical Software Characteristics

Many characteristics are governed by requirements, but some may not be.

All  characteristics of safety critical software must be evaluated to determine if they are
safety critical. Safety critical characteristics should be controlled by requirements which
receive rigorous quality control in conjunction with rigorous analysis and test.  Often all
characteristics of safety critical software are themselves safety critical.

Characteristics to be considered include at a minimum:

1) specific limit ranges
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2) out of sequence event protection requirements (e.g., if-then statements)

3) timing

4) relationship logic for limits.    Allowable limits for parameters might vary
depending on operational mode or mission phase.   Expected pressure in a
tank varies with temperature, for example.

5) voting logic

6) hazardous command processing requirements (see 4.2.2.2  Hazardous
Commands)

7) fault response

8) fault detection, isolation, and recovery

9) redundancy management/switchover logic; what to switch and under what
circumstances, should be defined as methods to control hazard causes
identified in the hazards analyses.  For example, equipment which has lost
control of a safety critical function should be switched to a good spare before
the time to criticality has expired.  Hot standby units (as opposed to cold
standby) should be provided where a cold start time would exceed time to
criticality.

This list is not exhaustive and often varies depending on the system architecture and
environment.
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5.1.3 Specification Analysis

Specification analysis evaluates the completeness, correctness, consistency, and testability of
software requirements. Well defined requirements are strong standards by which to evaluate a
software component. Specification analysis should evaluate requirements individually and as an
integrated set. Techniques used to perform specification analysis are:

•  hierarchy analysis,
•  control-flow analysis,
•  information-flow analysis, and
•  functional simulation

For the latter three techniques a large, well established body of literature exists describing in
detail these methods, and many others, and background for each.   Instead of reproducing those
lengthy texts the reader is directed to the excellent references listed below.  A brief description of
each technique will be given so that the analyst can determine if further study is warranted.

Beizer, Boris, “Software Testing Techniques”, Van Nostrand Reinhold, 1990. - (Note: 
Despite its title, the book mostly addresses analysis techniques).

Beizer, Boris, “Software System Testing and Quality Assurance”, Van Nostrand 
Reinhold, 1987.  (Also includes many analysis techniques).

Yourdon Inc., “Yourdon Systems Method - model driven systems development”, 
Yourdon Press, N.J., 1993.

DeMarco, Tom,  “Software State of the Art:  selected papers’, Dorset House, NY, 
1990.

The safety organization should ensure the software requirements appropriately influence the
software design and the development of the operator, user, and diagnostic manuals. The safety
agency should review the following documents and/or data:

1) System/segment specification and subsystem specifications

2) Software requirements specifications

3) Interface requirements specifications and all other interface documents

4) Functional flow diagrams and related data

5) Storage allocation and program structure documents

6) Background information relating to safety requirements

7) Information concerning system energy, toxic and other hazardous event sources,
especially those that may be controlled directly or indirectly by software

8) Software Development Plan, Software Quality Evaluation Plan, and Software
Configuration Management Plan and Historical data
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5.1.3.1 Hierarchy analysis

Hierarchy analysis establishes the dependency of requirements on each other

5.1.3.2 Control-flow analysis

Examines the order in which software functions will be performed. Control-flow analysis
identifies missing and inconsistently specified functions.  Information-flow analysis examines the
relationship between functions and data.   It examines which processes are performed in series,
and which in parallel (e.g., multi-tasking), and which tasks are prerequisites or dependent upon
other tasks.

5.1.3.3 Information-flow analysis

Examines the relationship between functions and data.  Identifies incorrect, missing, and
inconsistent input/output specifications.  Data flow diagrams are commonly used to report the
results of this activity, so this tchnique is best used during architectural design.  However, it can
also be effective during fast prototyping and/or spiral life cycle models for early, basic data and
command flow.

5.1.3.4 Functional simulation models

Simulators are useful development tools for evaluating system performance and human
interactions.  One can examine the characteristics of a software component to predict
performance, check human understanding of system characteristics, and assess feasibility.
Simulators have limitations in that they are representational models and sometimes do not
accurately reflect the real design, or make environmental assumptions which can differ from
conditions in the field

5.1.4 Formal Inspections

Software Formal Inspections are an important activity for safety to participate in, especially
during the requirements phase.  Not only is it a very good level at which to help effect change,
the safety representative can more thoroughly learn about the system and how it is supposed to
work as well as be in a position to find areas of safety concern, or non-concern, early-on in the
life of a project.

As part of the safety activity, a safety checklist should be created to follow when reviewing the
requirements. This checklist should be based on the safety requirements discussed in Section 4.2.

The generic requirements portion of the checklist should be tailored to emphasize those most
relevant and those most likely to be omitted or not satisfied.  Reference [6] “Targeting Safety-
Related Errors During Software Requirements Analysis” contains a good checklist relevant to the
NASA environment.

After the inspection, the safety representative should review the official findings of the inspection
and translate any that require safety follow-up on to a worksheet such as that in Table 4-1
Subsystem Criticality Analysis Report Form.  This form can then serve in any subsequent
inspections or reviews as part of the checklist.  It will also allow the safety personnel to track to
closure safety specific issues that arise during the course of the inspection.
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5.1.5 Timing, Throughput And Sizing Analysis

Timing and sizing analysis for safety critical functions evaluates software requirements that
relate to execution time and memory allocation.  Timing and sizing analysis focuses on program
constraints.  Typical constraint requirements are maximum execution time and maximum
memory usage.   The safety  organization should evaluate the adequacy and feasibility of safety
critical timing and sizing requirements.  These analyses also evaluate whether adequate resources
have been allocated in each case, under worst case scenarios.  For example, will I/O channels be
overloaded by many error messages, preventing safety critical features from operating.

Quantifying timing/sizing resource requirements can be very difficult.  Estimates can be based on
the actual parameters of similar existing systems.

Items to consider include:

•  memory usage versus availability;

•  I/O channel usage (load) versus capacity and availability;

•  execution times versus CPU  load and availability;

•  sampling rates versus rates of change of physical  parameters.

In many cases it is difficult to predict the amount of computing resources required.   Hence,
making use of past experience is important.

Memory usage versus availability

Assessing memory usage can be based on previous experience of software development if there
is sufficient confidence.   More detailed estimates should evaluate the size of the code to be
stored in the memory, and the additional space required for storing data and scratchpad space for
storing interim and final results of computations.   Memory estimates in early program phases
can be inaccurate, and the estimates should be updated and based on prototype codes and
simulations before they become realistic.  Dynamic Memory Allocation can be viewed as either a
practical memory run time solution or as a nightmare for assuring proper timing and usage of
critical data.  Any suggestion of Dynamic Memory Allocation, common in OOD, CH
environments, should be examined very carefully; even in “non-critical” functional modules.

I/O channel usage (Load) versus capacity and availability

Address I/O for science data collection, housekeeping and control.  Evaluate resource conflicts
between science data collection and safety critical data availability.  During failure events, I/O
channels can be overloaded by error messages and these important messages can be lost or
overwritten. (e.g. the British “Piper Alpha” offshore oil platform disaster).  Possible solutions
includes, additional modules designed to capture, correlate and manage lower level error
messages or errors can be passed up through the calling routines until at a level which can handle
the problem; thus, only passing on critical faults or combinations of faults, that may lead to a
failure.

Execution times versus CPU  load and availability
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Investigate time variations of CPU load, determine circumstances of peak load and whether it is
acceptable.  Consider multi-tasking effects.   Note that excessive multi-tasking can result in
system instability leading to “crashes”.

Sampling rates versus rates of change of physical  parameters

Design criteria for this is discussed in Section 4.2.2.4  Timing, Sizing and Throughput
Considerations.   Analysis should address the validity of the system performance models used,
together with simulation and test data, if available.

5.1.6 Conclusion

Use of the above techniques will provide some level of assurance that the software requirements
will result in a design which satisfies safety objectives.   The extent to which the techniques
should be used depends on the degree of criticality of the system and its risk index, as discussed
in Section 3.  Some of these analysis will need to be repeated during design and code phases as
the requirements may not have the depth of detail required to determine how the memory I/O will
function.

The output of the Software Safety Requirements Analyses (SSRA) are used as input to follow-on
software safety analyses.   The SSRA shall be presented at the Software Requirements Review
(SSR)/Software Specification Review (SSR) and system-level safety reviews.   The results of the
SSRA shall be provided to the ongoing system safety analysis activity.

Having developed and analyzed the baseline software safety requirements set,  an architectural
design is developed as per Section 4.3. Section 5.2 below describes analysis tasks for the
architectural design.

5.2 Architectural Design Analysis
The software architectural design process develops the high level  design that will implement the
software requirements. All software safety requirements developed above in Section 4.2.1 are
incorporated into the high level software design as part of this process.  The design process
includes identification of safety design features and methods (e.g., inhibits, traps, interlocks and
assertions) that will be used throughout the software to implement the software safety
requirements.

After allocation of the software safety requirements to the software design, Safety Critical
Computer Software Components (SCCSCs) are identified.

Bottom-up safety analysis is performed on the architectural design to identify potential hazards,
to define and analyze SCCSCs (Safety Critical Computer Software Components) and the early
test plans are reviewed to verify incorporation of safety  related testing.

Analyses included in the Architectural Design Phase are as follows:

Update Criticality Analysis
Conduct Hazard Risk Assessment
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Analyze Architectural Design
Interdependence Analysis
Independence Analysis
Update Timing/Sizing Analysis

5.2.1 Update Criticality Analysis

The software functions begin to be allocated to modules and components at this stage of
development.  Thus the criticality assigned during the requirements phase now needs to also be
allocated to the appropriate modules and components.

Software for a system, while often subjected to a single development program, actually consists
of a set of multi-purpose, multifunction entities.  The software functions need to be subdivided
into many modules and further broken down to components.

Some of these modules will be safety critical, and some will not.  The criticality analysis (See
section 5.1.2) provides the appropriate initial criticality designation for each software function.
The safety activity relates identified hazards from the following analyses previously described to
the Computer Software Components (CSCs) that may affect or control the hazards.

Analysis Guidebook Section

Preliminary Hazard Analysis (PHA) 2.1

Software Subsystem Hazard Analysis 2.3

Software Safety Requirements Analysis 5.1

This analysis identifies all those software components which implement software safety
requirements or components which interface with  SCCSCs which can affect their output.   The
designation Safety Critical Computer Software Component (SCCSC) should be applied to any
module, component, subroutine or other software entity identified by this analysis.

5.2.2 Conduct Hazard Risk Assessment

The safety activity performs a system hazard risk assessment to identify and prioritize those
SCCSCs that warrant further analysis beyond the  architectural design level.  System risk
assessment of hazards as described in the NHB 1700 series of documents, consists of ranking
hazards by severity level versus probability of occurrence.  This high-severity/high probability
hazards are prioritized higher for analysis and corrective action than low-severity/low probability
hazards.

While, Sections 5.1.2 Requirements Criticality Analysis and 5.2.1 Update Criticality Analysis,
simply assign a Yes or No to whether each component is safety critical, the Risk Assessment
process takes this further.  Each SCCSCs is prioritized for analysis and corrective action
according to the five levels of Hazard Prioritization ranking given previously in Table 2-2 Hazard
Prioritization - System Risk Index (page 8).
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5.2.3 Analyze Architectural Design

The safety activity analyzes the Architectural Design of those SCCSCs identified in the
preceding paragraphs to ensure all safety requirements are specified correctly and completely in
the Architectural Design.  In addition, the safety activity determines where in the Architectural
Design, and under what conditions unacceptable hazards occur.   This is done by postulating
credible faults/failures and evaluating their effects on the system.   Input/output timing, multiple
event, out-of-sequence event, failure of event, wrong event, inappropriate magnitude, incorrect
polarity, adverse environment, deadlocking, and hardware failure sensitivities are included in the
analysis.

Methods used for FMEA (Failure Modes and Effects Analysis) can be used substituting software
components for hardware components in each case.  A widely used FMEA procedure is MIL-
STD-1629, which is based on the following steps:

a. define the system to be analyzed...,

b. construct functional block diagrams...,

c. identify all potential item and interface failure modes...,

d. evaluate each failure mode in terms of the worst potential consequences...,

e. identify failure detection methods and compensating provisions...,

f. identify corrective design or other actions to eliminate / control failure...,

g. identify impacts of the corrective change....,

h. document the analysis and summarize the problems which could not be
corrected.....

Formal Inspections (described earlier), design reviews and animation/simulation augment this
process.

5.2.3.1 Design Reviews

Design data is reviewed to ensure it properly reflects applicable software safety requirements.
Design changes are generated where necessary.

Applicability matrices, compliance matrices, and compliance checklists are resources which can
be used to assist in completing this task.

Output products are engineering change requests, hazard reports (to capture design decisions
affecting hazard controls and verification) and action items.

5.2.3.2 Animation/Simulation

Simulators, prototypes (or other dynamic representations of the required functionality as
specified by the design), and test cases to exercise crucial functions can be developed.  Run the
tests and observe the system response.  Requirements can be modified as appropriate.
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Documented test results can confirm expected behavior or reveal unexpected behavior. The
status of critical verifications are captured by hazard reports.

5.2.4 Interface Analysis

5.2.4.1 Interdependence Analysis

Examine the software to determine the interdependence among CSCs, modules, tables, variables,
etc.  Elements of software which directly or indirectly influence SCCSCs are also identified as
SCCSCs, and as such should be analyzed for their undesired effects.  For example, shared
memory blocks used by two or more SCCSCs.  The inputs and outputs of each SCCSC are
inspected and traced to their origin and destination.

5.2.4.2  Independence Analysis

The safety activity evaluates available design documentation to determine the
independence/dependence and interdependence of SCCSCs to both safety-critical and non-
safety-critical CSCs.  Those CSCs that are found to affect the output SCCSCs are designated as
SCCSCs. Areas where FCR (Fault Containment Region ) integrity is compromised are identified.

Methodology:  Map the safety critical functions to the software modules and map the software
modules to the hardware hosts and  FCRs.  Each input and output of each SCCSC should be
inspected.

Resources are definition of safety critical functions (MWF and MNWF) needing to independent
(from Section 4.2.2.1), design  descriptions, and data diagrams.

Design changes to achieve valid FCRs and corrections to SCCSC designations may be necessary

5.3 Detailed Design Analysis
During the Detailed Design phase, more detailed software artifacts are available, permitting
rigorous analyses to be performed.   Detailed Design Analyses can make use of artifacts such as
the following:  detailed design specifications, emulators and Pseudo-Code Program Description
Language products (PDL).   Preliminary code produced by code generators within case tools
should be evaluated.

Many techniques to be used on the final code can be "dry run" on these design products.   In fact,
it is recommended that all analyses planned on the final code should undergo their first iteration
on the code-like products of the detailed design.   This will catch many errors before they reach
the final code where they are more expensive to correct.

The following techniques can be used during this design phase.

Design Logic Analysis

Design Data Analysis

Design Interface Analysis

Design Constraint Analysis
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Rate Monotonic Analysis

Software Fault Tree Analysis (SFTA)

Petri-Nets

Dynamic Flowgraph Analysis

Markov Modeling

Measurement of Complexity

Safe Subsets of Programming languages

Formal Methods and Safety-Critical Considerations

Requirements State Machines

Formal Inspections

Description of each technique is provided below.   Choice of techniques in terms of cost versus
effectiveness was discussed earlier in Section 3.2, TAILORING THE EFFORT - VALUE vs
COST.

5.3.1 Design Logic Analysis (DLA)

Design Logic Analysis (DLA) evaluates the equations, algorithms, and control logic of the
software design.   Logic analysis examines the safety-critical areas of a software component. A
technique for identifying safety-critical areas is to examine each function performed by the
software component.  If it responds to, or has the potential to violate one of the safety
requirements, it should be considered critical and undergo logic analysis.  A technique for
performing logic analysis is to analyze design descriptions and logic flows and note
discrepancies.

The ultimate, fully rigorous DLA uses the application of Formal Methods (FM).   Where FM is
inappropriate, because of its high cost versus software of low cost or low criticality, simpler DLA
can be used.   Less formal DLA involves a human inspector reviewing a relatively small quantity
of critical software artifacts (e.g. PDL, prototype code) , and manually tracing the logic.   Safety
critical logic to be inspected can include failure detection/diagnosis, redundancy management,
variable alarm limits, and command inhibit logical preconditions.

Commercial automatic software source analyzers can be used to augment this activity, but should
not be relied upon absolutely since they may suffer from deficiencies and errors, a common
concern of COTS tools and COTS in general.

5.3.2 Design Data Analysis

Design data analysis evaluates the description and intended use of each data item in the software
design. Data analysis ensures that the structure and intended use of data will not violate a safety
requirement. A technique used in performing design data analysis is to compare description to
use of each data item in the design logic.
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Interrupts and their effect on data must receive special attention in safety-critical areas.   Analysis
should verify that interrupts and interrupt handling routines do not alter critical data items used
by other routines.

The integrity of each data item should be evaluated with respect to its environment and host.
Shared memory, and dynamic memory allocation can affect data integrity.    Data items should
also be protected from being overwritten by unauthorized applications.  Considerations of EMI
affecting memory should be reviewed in conjunction with system safety.

5.3.3 Design Interface Analysis

Design interface analysis verifies the proper design of a software component's interfaces with
other components of the system. This analysis will verify that the software component's
interfaces have been properly designed. Design interface analysis verifies that control and data
linkages between interfacing components have been properly designed. Interface requirements
specifications are the sources against which the interfaces are evaluated.

Interface characteristics to be addressed should include data encoding, error checking  and
synchronization.

The analysis should consider the validity and effectiveness of checksums and CRCs.   The
sophistication of error checking implemented should be appropriate for the predicted bit error
rate of the interface.   An overall system error rate should be defined, and budgeted to each
interface.

Examples of interface problems:

• sender sends eight bit word with bit 7 as parity, but recipient believes bit 0 is parity.

• sender transmits updates at 10 Hz, but receiver only updates at 1 Hz.

• sender encodes word with leading bit start, but receiver decodes with trailing bit start.

• interface deadlock prevents data transfer (e.g., receiver ignores or cannot recognize
“Ready To Send”).

• user reads data from wrong address.

• sender addresses data to wrong address.

• In a language such as C, or C++ where data typing is not strict, sender may use
different data types than reviewer expects.  (Where there is strong data typing, the
compilers will catch this).

5.3.4 Design Constraint Analysis

Design constraint analysis evaluates restrictions imposed by requirements, the real world and
environmental limitations, as well as by the design solution. The design materials should
describe all known or anticipated restrictions on a software component. These restrictions may
include:

• update timing and sizing constraints as per Section 5.1.5,
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• equations and algorithms limitations,

• input and output data limitations (e.g., range, resolution, accuracy),

• design solution limitations,

• sensor/actuator accuracy and calibration

• noise, EMI

• digital wordlength (quantization/roundoff noise/errors)

• actuator power / energy capability (motors, heaters, pumps, mechanisms, rockets,
valves, etc.)

• capability of energy storage devices (e.g., batteries, propellant supplies)

• human factors, human capabilities and limitations [21]

• physical time constraints and response times

• off nominal environments (fail safe response)

• friction, inertia, backlash  in mechanical systems

• validity of models and control laws versus actual system behavior

• accommodations for changes of system behavior over time: wear-in,
hardware wear-out, end of life performance versus beginning of life performance
degraded system behavior and performance.

Design constraint analysis evaluates the ability of the software to operate within these
constraints.

5.3.5 Rate Monotonic Analysis

Rate Monotonic Analysis is a useful analysis technique for software.   It ensures that time critical
activities will be properly verified.

For further details on this technique, refer to publications by Sha and Goodenough, References
[22] and [25].

5.3.6 Software Fault Tree Analysis (SFTA)

Most of the information presented in this section is extracted from Leveson et al. [13,14].

It is possible for a system to meet requirements for a correct state and to also be unsafe.  It
is unlikely that developers will be able to identify, prior to the fielding of the system, all correct
but unsafe states which could occur within a complex system.  In systems where the cost of
failure is high, special techniques or tools such as Fault Tree Analysis (FTA) need to be used to
ensure safe operation.  FTA can provide insight into identifying unsafe states when developing
safety critical systems.  Fault trees have advantages over standard verification procedures.  Fault
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trees provide the focus needed to give priority to catastrophic events, and they assist in
determining environmental conditions under which a correct or incorrect state becomes unsafe.

FTA was originally developed in the 1960's for safety analysis of the Minuteman missile system.
It has become one of the most widely used hazard analysis techniques.  In some cases FTA
techniques may be mandated by civil or military authorities.

FTA is a complex subject, and is described further in Appendix-B attached to this Guidebook.

5.3.7 Petri-Nets

Petri-nets are a graphical technique that can be used to model and analyze safety-critical systems
for such properties as reachability, recoverability, deadlock, and fault tolerance.  Petri-nets allow
the identification of the relationships between system components such as hardware and
software, and human interaction or effects on both hardware and software.  Real-time Petri-net
techniques can also allow analysts to build dynamic models that incorporate timing information.
In so doing, the sequencing and scheduling of system actions can be monitored and checked for
states that could lead to unsafe conditions.

The Petri-net modeling tool is different from most other analysis methods in that it clearly
demonstrates the dynamic progression of state transitions.  Petri-nets can also be translated into
mathematical logic expressions that can be analyzed by automated tools.  Information can be
extracted and reformed into analysis assisting graphs and tables that are relatively easy to
understand (e.g., reachability graphs, inverse Petri-net graphs, critical state graphs).

Some of the potential advantages of Petri-nets over other safety analysis techniques include the
following:

1. Petri-nets can be used to derive timing requirements in real-time systems.

2. Petri-nets allow the user to describe the system using graphical notation, and thus they
free the analyst from the mathematical rigor required for complex systems.

3. They can be applied through all phases of system development.  Early use of Petri-
nets can detect potential problems resulting in changes at the early stages of
development where such changes are relatively easy and less costly than at later
stages.

4. They can be applied for the determination of worst case analysis and the potential
risks of timing failures.

5. A system approach is possible with Petri-nets since hardware, software and human
behavior can be modeled using the same language.

6. Petri-nets can be used at various levels of abstraction.

7. Petri-nets provide a modeling language which can be used for both formal analysis
and simulation.
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8. Adding time and probabilities to each Petri-net allows incorporation of timing and
probabilistic information into the analysis. The model may be used to analyze the
system for other features besides safety.

Unfortunately, Petri-nets require a large amount of detailed analysis to build even relatively small
systems, thus making them very expensive.  In order to reduce expenses, a few alternative Petri-
net modeling techniques have been proposed, each tailored to perform a specific type of safety
analysis.  For example, time Petri-net (TPN), take account for time dependency factor of real-
time systems; inverse petri-net, specifically needed to perform safety analysis, uses the
previously discussed backward modeling approach to avoid modeling all of the possible
reachable status; and critical state inverse petri-nets, which further refine inverse petri-net
analysis by only modeling reachable states at predefined criticality levels.

Petri-net analysis can be performed at any phase of the software development cycle; though, it is
highly recommended for reasons of expense and complexity that the process be started at the
beginning of the development cycle and expanded for each of the succeeding phases.  Petri-net,
inverse petri-net and critical state petri-nets are all relatively new technologies, are costly to
implement, and absolutely require technical expertise on the part of the analyst.

Petri net analysis is a complex subject, and is treated in more detail in Appendix-C.  A good
reference on the use of Petri-Nets in safety-critical applications can be found in [19].  Most of
this section,  Appendix-C, and the figures used are taken from [19].

5.3.8 Dynamic Flowgraph Analysis

Dynamic Flowgraph Analysis is a new technique, not yet widely used and still in the
experimental phase of evaluation.   It does appear to offer some promise, and in many respects
combines the benefits of conventional Software Fault Tree Analysis (SFTA) and Petri-Nets .

The Dynamic Flowgraph Methodology (DFM) is an integrated, methodical approach to modeling
and analyzing the behavior of software-driven embedded systems for the purpose of
dependability assessment and verification.   The methodology has two fundamental goals:  1) to
identify how events can occur in a system; and 2) identify an appropriate testing strategy based
on an analysis of system functional behavior.   To achieve these goals, the methodology employs
a modeling framework in which models expressing the logic of the system being analyzed are
developed in terms of causal relationships between physical variables and temporal
characteristics of the execution of software modules.

As an example, Figure 5-1 DFM Application to a Simple System illustrates a simple embedded
system, and Figure 5-2 DFM System Model is a DFM model of that system.   Models such as
these are analyzed to determine how a certain state (desirable or undesirable) can be reached.
This is done by developing timed fault trees which take the form of logical combinations of static
trees relating the system parameters at different points in time.   Figure 5-3 Example of DFM
Analysis shows a set of timed fault trees for the example DFM model.   The resulting
information concerning the hardware and software  states that can lead to certain events of
interest can then be used to increase confidence in the system, eliminate unsafe execution paths,
and identify testing criteria for safety critical software functions.
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Further description of this method is given in the paper by Garrett,Yau, Guarro and Apostolakais
[20].

Figure 5-1 DFM Application to a Simple System
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Figure 5-2 DFM System Model
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Figure 5-3 Example of DFM Analysis



NASA-GB-1740.13-96 90

5.3.9 Markov Modeling

Markov Modeling techniques were developed for complex systems and some analysts use these
techniques for software intensive systems.   They can provide reliability, availability and
maintainability data.   They model probabilistic behavior of a set of equipment as a continuous
time, homogeneous, discrete state Markov Process.   The statistical probability of the system
being in a particular macro state can be computed.   These statistics can be translated  into a
measure of system reliability and availability for different mission phases.

However,  attempting to apply these types of reliability modelling techniques to software is
questionable because, unlike hardware, software does not exhibit meaningful (random) failure
statistics.   Also, unlike hardware component failures, software failures are often not
independent.  Software errors depend on indeterminate human factors, such as alertness or
programmer skill level.

5.3.10 Measurement of Complexity

Software's complexity should be evaluated in order to determine if the level of complexity may
contribute to areas of concern for workability, understandability, reliability and maintainability.
Highly complex data and command structures are difficult, if not impossible, to test thoroughly
and can lead to errors in logic either in the initial build or in subsequent updates.  Not all paths
can usually be thought out or tested for and this leaves the potential for the software to perform
in an unexpected manner.  Highly complex data and command structures may be necessary,
however, there usually are techniques for avoiding too high a level of programming
interweaving.

Linguistic, structural, and combined metrics exist for measuring the complexity of software and
while discussed below briefly, it is suggested that the developer utilize the following references
from Section 5.1.3 for further guidance for these techniques.

Beizer, Boris, “Software Testing Techniques”, Van Nostrand Reinhold, 1990. - (Note:
Despite its title, the book mostly addresses analysis techniques).

Beizer, Boris, “Software System Testing and Quality Assurance”, Van Nostrand
Reinhold, 1987.  (Also includes many analysis techniques).

Yourdon Inc., “Yourdon Systems Method - model driven systems development”,
Yourdon Press, N.J., 1993.

DeMarco, Tom,  “Software State of the Art:  selected papers’, Dorset House, NY, 
1990.

Use complexity estimation techniques, such as McCabe or Halstead.  If  an automated tool is
available, the software design and/or code can be run through the tool.   If there is no automated
tool available, examine the critical areas of the detailed design and any preliminary code for areas
of deep nesting, large numbers of parameters to be passed, intense and numerous communication
paths, etc. (Refer to references cited above.)

Resources are the detailed design, high level language description, source code, and automated
complexity measurement tool(s).
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Output products are complexity metrics, predicted error estimates, and areas of high complexity
identified for further analysis or consideration for simplification.

Several automated tools are available on the market which provide these metrics.  The level and
type of complexity can indicate areas where further analysis, or testing, may be warranted.
Beware, however, these metrics should be used with caution as they may indicate that a structure,
such as a CASE statement, is highly complex while in reality that complexity leads to a simpler,
more straight forward method of programming and maintenance, thus decreasing the risk of
errors.

Linguistic measurements measure some property of the text without regard for the contents (e.g.,
lines of code, number of statements, number and type of operators, total number and type of
tokens, etc).   Halstead's Metrics is a well known measure of several of these arguments.

Structural metrics focuses on control-flow and data-flow within the software and can usually be
mapped into a graphics representation.  Structural relationships such as the number of links
and/or calls, number of nodes, nesting depth, etc. are examined to get a measure of complexity.
McCabe's Cyclomatic Complexity metric is the most well known and used metric for this type of
complexity evaluation.

5.3.11 Safe Subsets of Programming languages

Safety specific coding standards are developed which identify requirements for annotation of
safety-critical code and  limitation on use of certain language features which can reduce  software
safety.  The purpose of this section is to provide a technical overview of safety-critical coding
practices for developers and safety engineers, primarily those involving restricting the use of
certain programming language constructs.

The use of software to control safety-critical processes is placing software development
environments (i.e. languages, compilers, utilities, etc.) under increased scrutiny.  When computer
languages are taught, students are seldom warned of the limitations and insecurities that the
environment possesses.  An insecurity is a feature of a programming language whose
implementation makes it impossible or extremely difficult to detect some violation of the
language rules, by mechanical analysis of a program's text.  The computer science profession has
only recently focused on the issues of the inherent reliability of programming environments for
safety-critical applications.

This section will provide an introduction on the criteria for determining which languages are well
suited for safety-critical applications.  In addition, an overview of a safe subset of the Ada
language will be discussed with the rationale for rejecting language constructs.  Reading
knowledge of Pascal, Ada, C or another modern high level block structured language is required
to understand the concepts that are being discussed.

There are two primary reasons for restricting a language definition to a subset: 1) some features
are defined in an ambiguous manner and 2) some features are excessively complex.  A language
is considered suitable for use in a safety-critical application if it has a precise definition
(complete functionality as well), is logically coherent, and has a manageable size and complexity.
The issue of excessive complexity makes it virtually impossible to verify certain language
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features.  Overall, the issues of logical soundness and complexity will be the key toward
understanding why a language is restricted to a subset for safety-critical applications.

An overview of the insecurities in the Ada language standard is included in this entry.  Only
those issues that are due to the ambiguity of the standard will be surveyed.  The problems that
arise because a specific implementation (e.g., a compiler) is incorrect can be tracked by asking
the compiler vendor for a historical list of known bugs and defect repair times.  This information
should give a user a basis with which to compare the quality of product and service of different
vendors.

5.3.11.1 Insecurities Common to All Languages

All programming languages have insecurities either in their definition or their implementation.
The evolutionary trend of computer languages shows a trend of  newer languages trying to
correct the shortfalls of older generation languages (even though some individuals complain
about additional restrictions).

• Probably the most common misuse in practically all programming languages is that of
uninitialized variables.  This mistake is very hard to catch because unit testing will
not flag it unless explicitly designed to do so.  The typical manifestation of this error
is when a program that has been working successfully is run under different
environmental conditions and the results are not as expected.

• Calls to deallocate memory should be examined to make sure that not only is the
pointer released but that the memory used by the structure is released.

• The order of evaluation of operands when side effects from function calls modify the
operands is generally dismissed as poor programming practice but in reality is an
issue that is poorly defined (no standard of any type has been defined) and arbitrarily
resolved by implementors of language compilers.

5.3.11.2 Method of Assessment

The technique used to compare programming languages will not deal with differences among
manufacturers of the same language.  Compiler vendor implementations, by and large, do not
differ significantly from the intent of the standard, however standards are not unambiguous and
they are interpreted conveniently for marketing purposes.  One should be aware that
implementations will not adhere 100% to the standard because of the extremely large number of
states a compiler can produce.  The focus of this study then is to review the definition of a few
languages for certain characteristics that will provide for the user a shell against inadvertent
misuse.

When evaluating a language, the following questions should be asked of the language as a
minimum:

1) Can it be shown that the program cannot jump to an arbitrary location?

2) Are there language features that prevent an arbitrary memory location from being
overwritten?
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3) Are the semantics of the language defined sufficiently for static code analysis to be
feasible?

4) Is there a rigorous model of both integer and floating point arithmetic within the
standard?

5) Are there procedures for checking that the operational program obeys the model of the
arithmetic when running on the target processor?

6) Are the means of typing strong enough* to prevent misuse of variables?

7) Are there facilities in the language to guard against running out of memory at
runtime?

8) Does the language provide facilities for separate compilation of modules with type
checking across module boundaries?

9) Is the language well understood so designers and programmers can write safety-
critical software?

10)  Is there a subset of the language which has the properties of a safe language as
evidenced by the answers to the other questions?

*Strong typing implies an explicit data type conversion is required when transforming one type to another

5.3.11.3 C Language

The C language is extremely popular because of its flexibility and support environment.    There
is a wide variety of mature and inexpensive development and verification tools available.   Also,
the pool of experienced vendors and personnel is quite large.   However, its definition lacks the
rigor necessary to qualify it as a suitable vehicle for safety-critical applications.  There are dozens
of dialects of C, raising integrity concerns about code developed on one platform and used on
another.   Many safety-critical applications have been coded in C and function without serious
flaws.  The implications of choosing a language with characteristics that do not provide the
checks present in Pascal, Ada or Modula 2 places the burden of a thorough verification of code
and input data sequences on the developers.

The characteristic of C that decreases its reliability is that C is not a strongly typed language.
Data typing in C can be circumvented by representational viewing (this means that by unintended
use of certain language constructs, not by explicit conversion, a datum that represents an integer
can be interpreted as a character).  The definition of strong typing implies an explicit conversion
process when transforming one data type to another.  C allows for implicit conversion of basic
types and pointers.  One of the features of strong typing is that sub-ranges can be specified for the
data.  With a judicious choice of data types, a result from an operation can be shown to be within
a sub-range.  In C it is difficult to show that any integer calculation cannot overflow.  Unsigned
integer arithmetic is modulo the word length without overflow detection and therefore insecure
for safety purposes.  The other feature of C that does not restrict operations is the way C operates
with pointers. C does not place any restrictions on what addresses a programmer can point to and
it allows arithmetic on pointers.  While C's flexibility makes it attractive  it also makes it a less
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reliable medium for expression of programs.  C has other limitations which are mentioned in
reference [15].

Restricting the C language to certain constructs would not be feasible because the resulting
language would not have the necessary functionality.

Floating Point Arithmetic in C:

The ANSI C standard does not mandate any particular implementation for floating point
arithemtic, as a result every C compiler implements it differently.   The following test calculation
can be executed:

x = 1020+1

y = x-1020

The resulting value for y will differ greatly from compiler to compiler, none of them will be
correct due to wordlength round-off.

Miscellaneous problems:

The following quotations were taken from Imperial College, London, UK, world wide web home
page Dictionary of Computer Terminology, compiled by Denis Howe.   It contains graphic
descriptions of common problems with C.

“smash the stack”

<jargon> In C programming, to corrupt the execution stack by writing past the end of a local
array or other data structure. Code that smashes the stack can cause a return from the routine to
jump to a random address, resulting in insidious data-dependent bugs.

Variants include “trash the stack”, “scribble the stack”, “mangle the stack”.

“precedence lossage”

/pre's*-dens los'*j/ A C coding error in an expression due to unintended grouping of arithmetic or
logical operators. Used especially of certain common coding errors in C due to the nonintuitively
low precedence levels of "&", "|", "^", "<<" and ">>".  For example, the following C

expression, intended to test the least significant bit of x,

x & 1 == 0

is parsed as

        x & (1 == 0)

which the compiler would probably evaluate at compile-time to

(x & 0)

and then to 0.

Precedence lossage can always be avoided by suitable use of parentheses.   For this reason, some
C programmers deliberately ignore the language's precedence hierarchy and use parentheses
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defensively). Lisp fans enjoy pointing out that this can't happen in *their* favorite language,
which eschews precedence entirely, requiring one to use explicit parentheses everywhere.

“overrun screw”

A variety of fandango on core produced by a C program scribbling past the end of an array (C
implementations typically have no checks for this error). This is relatively benign and easy to
spot if the array is static; if it is auto, the result may be to smash the stack - often resulting in
heisenbugs of the most diabolical subtlety. The term "overrun screw" is used especially of
scribbles beyond the end of arrays allocated with malloc; this typically overwrites the allocation
header for the next block in the arena, producing massive lossage within malloc and often a core
dump on the next operation to use stdio or malloc itself.

 “fandango on core”

 (Unix/C, from the Mexican dance)   In C, a wild pointer that runs out of bounds, causing a core
dump, or corrupts the malloc arena in such a way as to cause mysterious failures later on, is
sometimes said to have "done a fandango on core". On low-end personal machines without an
MMU, this can corrupt the operating system itself, causing massive lossage. Other frenetic
dances such as the rhumba, cha-cha, or watusi, may be substituted.

“C Programmer's Disease”

The tendency of the undisciplined C programmer to set arbitrary but supposedly generous static
limits on table sizes (defined, if you're lucky, by constants in header files) rather than taking the
trouble to do proper dynamic storage allocation.  If an application user later needs to put 68
elements into a table of size 50, the afflicted programmer reasons that he or she can easily reset
the table size to 68 (or even as much as 70, to allow for future expansion) and recompile. This
gives the programmer the comfortable feeling of having made the effort to satisfy the user's
(unreasonable) demands, and often affords the user multiple opportunities to explore the
marvellous consequences of fandango on core.   In severe cases of the disease, the programmer
cannot comprehend why each fix of this kind seems only to further disgruntle the user.

http://wombat.doc.ic.ac.uk/

The Free On-line Dictionary of Computing

The above quotation was reproduced by permission of Denis Howe  <dbh@doc.ic.ac.uk>.

Other references [24] discussed the important problem of dynamic memory management in C
(Note that simply prohibiting dynamic memory management is not necessarily the best course,
due to increased risk of exceeding memory limits without warning).

Additional guidelines on C programming practices are described in the book “Safer C:”
(Reference [25], and also in [27] and [28]).

5.3.11.4 Pascal Language

The Pascal language is  well defined and is considered a suitable medium for safety-critical
applications provided restrictions are made.  SPADE Pascal (SPADE PASCAL is a
commercially available product and is used here only as an example to illustrate a technical
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point) is a subset that has undergone the study and verification necessary for safety-critical
applications.  The major issue with Pascal is that no provision for exception handling is provided.
However, if a user employs a good static code analysis tool, the question of overflow in integer
arithmetic can be addressed and fixed without needing exception handlers.  The SPADE

Pascal subset is to be considered a serious candidate for safety-critical applications.

5.3.11.5 Ada Language

The Ada standard was first released on 17th February 1983 as ANSI/MIL-STD-1815A
“Reference Manual for the Ada Programming Language”.   This original version is now called
Ada 83.   The first major revision of the Ada standard was released on 21 December 1994 via
ISO/IEC 8652:1995(E), and is commonly known as Ada 95.   Ada 95 corrects many of the safety
deficiencies of Ada 83.

5.3.11.5.1  Ada 83

The Ada language still has many ambiguities in its definition and this is probably the largest
single reliability issue. The semantics of Ada 83 were not well defined and, as of 1989, about 800
queries had been raised to DoD over the definition.  A subset of Ada 83 called SPADE Ada
addresses most of the requirements for a language used for safety-critical applications.  The Ada
language has strong typing that is more restrictive than C's or Pascal's.  The GOTO statement was
only provided for porting of Fortran programs to Ada and not for regular use.  Exception
handling is a feature of the language and users can write extremely detailed handlers.  Exception
handlers have their drawbacks for safety-critical systems.  Writing an exception handler may
result in an overall lower reliability of the program if it is not written properly.  Carre, in
reference [16], makes the point that proving an exception handler may be more difficult than
writing an exception free program and proving it to be so.

5.3.11.5.2  Insecurities in the Ada 83 Language
When evaluating a programming language, a thorough analysis of the known insecurities is
necessary to determine if the language is adequate for safety-critical programming.  Problems
caused by an incorrect implementation of the Ada standard by a compiler vendor can only be
mentioned in this entry in a generic fashion.  An obvious safety-related concern is if developing
organizations are aware of problems generic to the Ada language and have a vendor's problem
report list.  A user who is considering selecting a compiler for a safety-critical application must
be aware that all implementations, even though they have passed the Ada ACVC (Ada  Compiler
Validation Capability) will contain defects.  To evaluate how one compiler stands up against
another a user should request the history of defects, both those found by customers and by the
vendor, along with typical and worst case delays in fielding fixes.  This history, along with a
rough customer base figure, will give an approximate idea of how extensive and rigorous a test
bed the compiler has been subjected to.  If a vendor cannot, or will not, supply this kind of
information then even if the compiler has been used on a similar project before hand, that vendor
should not be considered a viable choice.

The insecurities of the Ada language are classified and briefly explained in the Ada Language
Reference Manual (LRM) 1.6 [17].
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5.3.11.6 Subset Ada

SPADE Ada is based upon the "Pascal core of Ada" and is supplemented by packages, private
types, functions with structured values and with some restrictions to the library system.  SPADE
Ada requires annotations to convey certain semantic information necessary for the static code
analysis tool.  Annotations are preceded by the Ada comment  character '--' (so compilers don't
interpret what follows) but the SPADE tool uses the annotated declarations to extract information
required for analysis and proofs.  Imposing the discipline of a subset of Ada is still valuable, even
if the SPADE Ada code checker is not available, because the behavior of the restricted language
constructs is predictable, many insecurities of the language have been eliminated because the
features they were associated with are not used, and manual verification of the code (proofs by
hand) can be performed if required.

5.3.11.7 C++ Language

The C++ programming language is an extension (superset) of the C programming language
discussed above (Section  5.3.11.3).   The main difference between C and C++ is that C++
provides an Object Oriented environment, allowing structured design to be applied.  This is a
positive development, since structured design, as discussed earlier, reduces design errors prior to
coding.   C++ is also more strongly typed than C.  However, C++ suffers from many of the same
drawbacks as C.

A "safe subset" of  C++ does not presently exist.

Some good practices suggested to mitigate the inherent insecurities of C++ are as follows:

a) never use multiple inheritance, only use one to one (single) inheritance.  This is
because interpretations of how to implement multiple inheritance are inconsistent
(Willis and Paddon, [29] 1995.  Szyperski supports this view.);

b) only rely on fully abstract classes, passing interface but not implementation
(suggestion by Szyperski at 1995 Safety through Quality Conference - NASA-KSC
[30]).

A review of potential problems in C++ was published by Perara (Reference [26]).  The headings
from that paper are as follows:

• Don’t rely on the order of initialization of globals

• Avoid variable-length argument lists

• Don’t return non-constant references to private data

• Remember ‘The Big Three’

• Make destructors virtual

• Remember to de-allocate arrays correctly

• Avoid type-switching

• Be careful with constructor initialization lists
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• Stick to consistent overloading semantics

• Be aware of the lifetimes of temporaries

• Look out for implicit construction

• Avoid old-style casts

• Don’t throw caution to the wind exiting a process

• Don’t violate the ‘Substitution Principle’

• Remember there are exceptions to every rule.

A detailed discussion is provided on each point, in that reference.

5.3.11.8 Programming Languages: Conclusions

A technique for evaluating safety-critical languages has been described along with other
considerations for implementers and for choosing a vendor.  The Ada subset we have described
is suitable for safety-critical systems.  Although a Pascal subset is suitable it was not described
because Ada is rapidly becoming the most common language on new projects.  The choice of "C"
is to be avoided for our domain of interest because the language lacks the features that permit
robust, reliable programming.  The Ada subset minimizes the insecurities that were discussed in
this entry by restricting the misuse of certain features.  The objective of the subset is to define an
unambiguous syntax so that the semantics can be used for proofs if necessary.  All Ada
implementations have defects and implementers of safety-critical systems should review the
historical defect list to verify that the problems have been addressed and fixed in a timely fashion

5.3.12 Miscellaneous Problems Present in Languages Other than C

The following quotations were also taken from the Imperial College, London, UK, world wide
web home page Dictionary of Computer Terminology, compiled by Denis Howe.   It contains
graphic descriptions of common problems.

aliasing bug

<programming> (Or "stale pointer bug") A class of subtle programming errors that can arise in
code that does dynamic allocation, especially via malloc or equivalent. If several pointers address
(are "aliases for") a given hunk of storage, it may happen that the storage is freed or reallocated
(and thus moved) through one alias and then referenced through another, which may lead to
subtle (and possibly intermittent) lossage depending on the state and the allocation history of the
malloc arena. This bug can be avoided by never creating aliases for allocated memory, or by use
of a higher-level language, such as Lisp, which employs a garbage collector.

Though this term is nowadays associated with C programming, it was already in use in a very
similar sense in the ALGOL 60 and FORTRAN communities in the 1960s.

spam

<jargon, programming> To crash a program by overrunning a fixed-size buffer with excessively
large input data.
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heisenbug

<jargon> /hi:'zen-buhg/ (From Heisenberg's Uncertainty Principle in quantum physics) A bug
that disappears or alters its behaviour when one attempts to probe or isolate it. (This usage is not
even particularly fanciful; the use of a debugger sometimes alters a program's operating
environment significantly enough that buggy code, such as that which relies on the values of
uninitialized memory, behaves quite differently.)

In C, nine out of ten heisenbugs result from uninitialized auto variables, fandango on core
phenomena (especially lossage related to corruption of the malloc arena) or errors that smash the
stack.

Bohr bug

<jargon, programming> /bohr buhg/ (From Quantum physics) A repeatable bug; one that
manifests reliably under a possibly unknown but well-defined set of conditions.

mandelbug

<jargon, programming> /man'del-buhg/ (From the Mandelbrot set) A bug whose underlying
causes are so complex and obscure as to make its behaviour appear chaotic or even
nondeterministic. This term implies that the speaker thinks it is a Bohr bug, rather than a
heisenbug.

schroedinbug

<jargon, programming> /shroh'din-buhg/ (MIT, from the Schroedinger's Cat thought-experiment
in quantum physics).  A design or implementation bug in a program that doesn't manifest until
someone reading source or using the program in an unusual way notices that it never should have
worked, at which point the program promptly stops working for everybody until fixed. Though
(like bit rot) this sounds impossible, it happens; some programs have harboured latent
schroedinbugs for years.

bit rot

 (Or bit decay). Hypothetical disease the existence of which has been deduced from the
observation that unused programs or features will often stop working after sufficient time has
passed, even if "nothing has changed". The theory explains that bits decay as if they were
radioactive. As time passes, the contents of a file or the code in a program will become
increasingly garbled.

There actually are physical processes that produce such effects (alpha particles generated by trace
radionuclides in ceramic chip packages, for example, can change the contents of a computer
memory unpredictably, and various kinds of subtle media failures can corrupt files in mass
storage), but they are quite rare (and computers are built with error-detecting circuitry to
compensate for them). The notion long favoured among hackers that cosmic rays are among the
causes of such events turns out to be a myth; see the cosmic rays entry for details.

Bit rot is the notional cause of software rot.

software rot
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Term used to describe the tendency of software that has not been used in a while to lose; such
failure may be semi-humourously ascribed to bit rot. More commonly, "software rot" strikes
when a program's assumptions become out of date. If the design was insufficiently robust, this
may cause it to fail in mysterious ways.

For example, owing to endemic shortsightedness in the design of COBOL programs, most will
succumb to software rot when their 2-digit year ounters wrap around at the beginning of the year
2000. Actually, related lossages often afflict centenarians who have to deal with computer
software designed by unimaginative clods.  One such incident became the focus of a minor
public flap in 1990, when a gentleman born in 1889 applied for a driver's licence renewal in
Raleigh, North Carolina. The new system refused to issue the card, probably because with 2-digit
years the ages 101 and 1 cannot be distinguished.

Historical note: Software rot in an even funnier sense than the mythical one was a real problem
on early research computers (eg. the R1; see grind crank).   If a program that depended on a
peculiar instruction hadn't been run in quite a while, the user might discover that the opcodes no
longer did the same things they once did. ("Hey, so-and-so needs an instruction to do such-and-
such. We can snarf this opcode, right? No one uses it.")

Another classic example of this sprang from the time an MIT hacker found a simple way to
double the speed of the unconditional jump instruction on a PDP-6, so he patched the hardware.
Unfortunately, this broke some fragile timing software in a music-playing program, throwing its
output out of tune. This was fixed by adding a defensive initialization routine to compare the
speed of a timing loop with the real-time clock; in other words, it figured out how fast the PDP-6
was that day, and corrected appropriately.

memory leak

An error in a program's dynamic store allocation logic that causes it to fail to reclaim discarded
memory, leading to eventual collapse due to memory exhaustion. Also (especially at CMU)
called core leak. These problems were severe on older machines with small, fixed-size address
spaces, and special "leak detection" tools were commonly written to root them out.

With the advent of virtual memory, it is unfortunately easier to be sloppy about wasting a bit of
memory (although when you run out of virtual memory, it means you've got a *real* leak!).

memory smash

 (XEROX PARC) Writing to the location addressed by a dangling pointer.”

5.3.13 Formal Methods and Safety-Critical Considerations

In the production of safety-critical systems or systems that require high assurance, Formal
Methods* provide a methodology that gives the highest degree of assurance for a trustworthy
software system.  Assurance cannot be measured in a quantitative, objective manner for software

systems that require reliability figures that are of the order of one failure in 109 hours of
operation.  An additional difficulty that software reliability cannot address to date, in a



NASA-GB-1740.13-96101

statistically significant manner, is the difference between catastrophic failures and other classes
of failures.

Formal Methods have been used with success on both military and commercial systems that were
considered safety-critical applications.  The benefits from the application of the methodology
accrue to both safety and non-safety areas.  Formal Methods do not guarantee a precise
quantifiable level of reliability; at present they are only acknowledged as producing systems that
provide a high level of assurance.

On a qualitative level the following list identifies different levels of application of assurance
methods in software development [31].  They are ranked by the perceived level of assurance
achieved with the lowest numbered approaches representing the highest level of assurance.  Each
of the approaches to software development is briefly explained by focusing on that part of the
development that distinguishes it from the other methods.

1)  Formal development down to object code requires that formal mathematical proofs be
carried out on the executable code.

2)  Formal development down to source code requires that the formal specification of the
system undergo proofs of properties of the system.

3)  Rigorous development down to source code is when requirements are written in a
formal specification language and emulators of the requirements are written.  The
emulators serve the purpose of a prototype to test the code for correctness of
functional behavior.

4) Structured development to requirements analysis then rigorous development down to
source code performs all of the steps from the previous paragraph.  The source code
undergoes a verification process that resembles a proof but falls short of one.

5)  Structured development down to source code is the application of the structured
analysis/structured design method proposed by DeMarco [32].  It consists of a
conceptual diagram that graphically illustrates functions, data structures, inputs,
outputs, and mass storage and their interrelationships. Code is written based on the
information in the diagram.

6)  Ad hoc techniques encompass all of the non-structured and informal techniques (i.e.
hacking, code a little then test a little).

The methodology described here is that of level 3, rigorous development down to source
code.

5.3.14 Requirements State Machines

Requirements State Machines (RSM) are sometimes called Finite State Machines (FSM).   An
RSM is a model or depiction of a system or subsystem, showing states and the transitions
between the states.   Its goal is to identify and describe ALL possible states and their transitions.

RSM analysis can be used on its own, or as a part of a structured design environment, (eg, Object
Oriented Design see Section 4.2.1 and Formal Methods (see Section  4.2.3.2)).
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Whether or not Formal Methods are used to develop a system, a high level RSM can be used to
provide a view into the architecture of an implementation without being engulfed by all the
accompanying detail.  Semantic analysis criteria can be applied to this representation and to
lower level models to verify the behavior of the RSM and determine that its behavior is
acceptable.

The analysis criteria will be listed in a section below and in subsequent sections because they are
applicable at practically every stage of the development life cycle.

5.3.14.1 Characteristics of State Machines

A formal description of state machines can be obtained from texts on Automata Theory.  This
description will only touch on those properties that are necessary for a basic understanding of the
notation and limitations.  State machines use graph theory notation for their representation.  A
state machine consists of states and transitions.  The state represents the condition of the machine
and the transition represent changes between states.  The transitions are directed (direction is
indicated by an arrow), that is, they represent a directional flow from one state to another.  The
transition from one state to another is induced by a trigger or input that is labeled on the
transition.  Generally an output is produced by the state machine [38].

The state machine models should be built to abstract different levels of hierarchy.  The models
are partitioned in a manner that is based on considerations of size and logical cohesiveness.  An
uppermost level model should contain at most 15 to 20 states; this limit is based on the practical
consideration of comprehensibility.  In turn, each of the states from the original diagram can be
exploded in a fashion similar to the bubbles in a data flow diagram/control flow diagram
(DFD/CFD) (from a structured analysis/structured design methodology) to the level of detail
required [39].  An RSM model of one of the lower levels contains a significant amount of detail
about the system.

The states in each diagram are numbered and classified as one of the following attributes:
Passive, Startup, Safe, Unsafe, Shutdown, Stranded and Hazard (see Figure 5-4 Example of State
Transition Diagram).  For the state machine to represent a viable system, the diagram must obey
certain properties that will be explained later in this work.

The passive state represents an inert system, that is, nothing is being produced.  However, in the
passive state, input sensors are considered to be operational.  Every diagram of a system contains
at least one passive state.  A passive state may transition to an unsafe state.

The startup state represents the initialization of the system.  Before any output is produced, the
system must have transitioned into the startup state where all internal variables are set to known
values.  A startup state must be proven to be safe before continuing work on the remaining states.
If the initialization fails, a timeout may be specified and a state transition to an unsafe or passive
state may be defined.

Figure 5-4 Example of State Transition Diagram
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The shutdown state represents the final state of the system.  This state is the only path to the
passive state once the state machine has begun operation.  Every system must have at least one
shutdown state.  A timeout may be specified if the system fails to close down.  If a timeout
occurs, a transition to an unsafe or stranded state would be the outcome.  Transition to the
shutdown state does not guarantee the safety of the system.  Requirements that stipulate safety
properties for the shutdown state are necessary to insure that hazards do not occur while the
system is being shutdown.
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A safe state represents the normal operation of the system.  A safe state may loop on itself for
many cycles.  Transitions to other safe states is a common occurrence.  When the system is to be
shutdown, it is expected to transition from a safe state to the shutdown state without passing
through an unsafe state.  A system may have zero or more safe states by definition.  A safe state
also has the property that the risk of an accident associated with that state is acceptable (i.e., very
low).

Unsafe states are the precursors to accidents.  As such, they represent either a malfunction of the
system, as when a component has failed, or the system displays unexpected and undesired
behavior.  An unsafe state has an unacceptable, quantified level of risk associated with it from a
system viewpoint.  The system is still in a controllable state but the risk of transition to the
hazard state has increased.  Recovery may be achieved through an appropriate control action that
leads either to an unsafe state of lesser risk or, ideally, to a safe state.  A vital consideration when
analyzing a path back to a safe state is the time required for the transitions to occur before an
accident occurs.  A system may have zero or more unsafe states.

The hazard state signals that control of the system has been lost.  In this situation the loss of the
system is highly probable and there is no path to recovery.  The hazard state should take action
where possible to contain the extent of damage.

The stranded state represents the situation, where during the course of a shutdown operation, the
system has lost track of state information and cannot determine a course of action.  This state has
a high potential to transition to an unsafe state after a specified time depending upon what system
is modeled or possibly upon environmental conditions.  The only recovery from this state is a
power-on restart.

5.3.14.2 Properties of Safe State Machines

There are certain properties that the state machine representation should exhibit in order to
provide some degree of assurance that the design obeys certain safety rules.  The criteria for the
safety assertions are based on logical considerations and take into account input/output variables,
states, trigger predicates, output predicates, trigger to output relationship and transitions.

5.3.14.3 Input/Output Variables

All information from the sensors should be used somewhere in the RSM.  If not, either an input
from a sensor is not required or, more importantly, an omission has been made from the software
requirements specification.  For outputs it can be stated that, if there is a legal value for an output
that is never produced, then a requirement for software behavior has been omitted [40].

5.3.14.4 State Attributes

The state attributes of the RSM are to be labeled according to the scheme in  Figure 5-5 Example
RSM and Signals.

Figure 5-5 Example RSM and Signals
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5.3.14.5 Trigger Predicates

A necessary, but not a sufficient condition for a system to be called robust, is that there must
always be a way for the RSM to leave every state of the system.  This leads us to define two
statements about RSMs:

1) Every state in the RSM has a defined behavior (transition) for every possible input.
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2) One or more input predicates, out of all possible input predicates, must be able to
trigger a transition out of any state.

In case there is no input within a specified time, every state must have a defined transition, such
as a timeout, that triggers an action.  The state machine may also express what actions are taken
if the input data is out of range.  Low level functions, such as exception handling, may be
features that are required for an implementation (see Figure 5-4).

A relatively simple method that provides an elementary correctness check is for range
verification of input data.  The computational cost in most cases will probably not be significant.
While range checking does not provide a guarantee of correctness, it is the first line of defense
against processing bad data.  Obviously, if  the input data is out of range, we have identified
either a bad sensor or a bad data communication medium.*

The RSM technique has limitations when analyzing fault tolerant systems that contain two or
more independent lanes.  In redundant systems the use of threshold logic may generate another
class of safety problems.  The area where problems may arise is threshold logic used to validate
inputs coming from different sensors.  Typically the value read from the different sensors will
differ by a certain percentage.  Sensors are calibrated to minimize this difference, but a check
must be made to verify that neither of the following situations occur:  1) a threshold may trigger
one lane of the system and not the other if a value below the threshold is contrasted with a value
above the threshold from the other lane; and 2) the input as processed by the control law will
generate quantitatively and qualitatively different control actions.  This effect can be avoided if a
vote is taken at the source of the data before transmitting potentially confusing data.  In the case
of fully redundant, dual lane systems, each system may determine that the other is in error when
in reality there is no hardware or software error.  A high level RSM will not show this explicitly
but it is an issue that needs to be considered in the design before any prototyping, or worse yet,
coding takes place [41].

Timing problems are common causes of failures of real-time systems.  Timing problems usually
happen because either timing is poorly specified or race conditions that were not thought possible
occur and cause an unwanted event to interrupt a desired sequence.  All real-time data should
have upper and lower bounds in time.  Race conditions occur when the logic of a system has not
taken into account the generation of an event ahead of the intended time.  This type of error
occurs when events that should be synchronized  or sequenced are allowed to proceed in parallel.
This discussion will not address the obvious case of an error in the sequence logic.

*A third possibility may also exist:  the data may truly be valid, but the understanding of the system or environment state is
incomplete and data having values outside of the expected range is regarded as invalid (e.g. data on ozone loss in the atmosphere
above Antarctica was regarded as invalid until ground based observations confirmed the situation).

The ability to handle inputs will be called capacity and the ability to handle diverse types of input
will be called load.  A real-time system must have specifications of minimum and maximum
capacity and load.  Robustness requires the ability of the system to detect a malfunction when the
capacity limits have been violated.  Capacity limits are often tied to interrupts where hardware
and software analyses are necessary to determine if the system can handle the workload (e.g.,
CPU execution time, memory availability, etc.).  Load involves multiple input types and is a
more comprehensive measure than capacity.  Criteria for the system or process load limits must
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be specified.  For a system to be robust, a minimum load specification needs to be specified, as
well as a maximum (assuming that a real-time process control system has inputs of a certain
period).  The capacity and load constraints as developed for the RSM will help serve as a guide
for designing the architecture of the system and subsequently in the final system implementation.
These performance requirements have safety implications.  The ability of the system to handle
periodic capacity and load requirements is a fundamental safety property.  If a system cannot
handle the work load then the safety of the system is at risk because process control is not
performed in a timely fashion.

5.3.14.6 Output Predicates

The details of when an output is valid may not be known at the time the RSM is generated but
these constraints should be documented somewhere in the RSM to serve as a guideline for the
implementer.  In a similar fashion to inputs, outputs must have their value, and upper and lower
timing bounds specified.  Output capacity is limited by the ability of the actuator to respond.
Compatibility must exist between the frequency of reaction to input and the capacity of the
output mechanism to respond.  This requires that a timing analysis be performed to be certain
that potential worst case input and output rate speeds can be adequately handled by both software
and hardware.  For output data to be valid the input data must be from a valid time range.
Control decisions must be based on data from the current state of the system, not on stale data.
In the computation of the output, the delay in producing the output must not exceed the
permissible latency.  An example of an incorrect output timing problem occurred on the F-18
fighter plane.  A wing mounted missile failed to separate from the launcher after ignition because
a computer program signaled the missile retaining mechanism to close before the rocket had built
up enough thrust to clear the missile from the wing.  The aircraft went violently out of control,
but the missile fuel was eventually expended and the pilot was able to bring the plane under
control before a crash occurred [42].

5.3.14.7 Degraded Mode Operation

When a system cannot meet its work load requirements in the allotted time or unanticipated error
processing has consumed processor resources and insufficient time is available for normal
processing, the system must degrade in a graceful manner.  Responses to graceful degradation
include:

1) Error handling.

2) Logging and generation of warning messages.

3) Reduction of processing load (execute only core functionality).

4) Masking of nonessential interrupts.

5) Reduction of accuracy and/or response time.

6) Signals to external world to slow down inputs.

7) Trace of machine state to facilitate post event analysis.
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Which of the above measures get implemented depends on the application and its specific
requirements.

Where there is load shedding, a degraded mode RSM will exist that exhibits properties that in all
likelihood are different from the original RSM.  The same analysis that is performed for the RSM
of the fully operational system should be done on the degraded mode RSM.

Special care must be taken in the implementation of performance degradation that reduces
functionality and/or accuracy.  A situation can arise where, because of the transition to a state
machine with different properties (and therefore, the control laws of the original RSM will be
affected by a reduction in accuracy or frequency of the inputs), the outputs may not transition
smoothly.  In systems where operator intervention is an integral part of operation, this jolt may
confuse the operator and contribute to further degradation because of operator inability to predict
behavior.  In principle, where response time limits can be met, predictability is preferable to
abrupt change.

In order to recover from degraded mode operation there needs to be a specification of the
conditions required to return to normal operations.  These conditions must be specific enough to
avoid having the system continuously oscillate back and forth between normal and degraded
mode.  In practice, a minimum delay and a check of the cause of the anomaly can achieve this.

5.3.14.8 Feedback Loop Analysis

Process control models provide feedback to the controller to notify changes in state caused by
manipulated variables or internal disturbances.  In this manner the system can adjust its behavior
to the environment.  An RSM can be used to verify if feedback information is used and what
signals are employed.  If feedback is absent then either the design is incorrect or the requirements
are faulty.  The design of the system needs to incorporate a mechanism to detect the situation
where a change in the input should trigger a response from the system and the response is either
too slow, too fast or unexpected.  For example, when a command is given to turn on a heater, a
resulting temperature rise curve would be expected to follow a theoretical model within certain
tolerances.  If the process does not respond within a certain period of time then it can be assumed
that something is wrong and the software must take an appropriate action.  At a minimum, this
action should be the logging of the abnormality for future analysis.  The simplest, most
inexpensive check for a servo loop is to verify if the reference position is different from the
actual position.  If the difference is non-negligible, some form of control action must be taken.  If
the actual position does not vary in the presence of a command to act, then it can be concluded
that there is a fault in the system.  RSMs can be used to help design the control process and to
verify that all feedback loops are closed and that they generate the appropriate control action.

5.3.14.9 Transition Characteristics

Requirements may also involve specifications regarding transitions between states.  A system
may or may not possess certain properties, while some other properties are mandatory.  All safe
states must be reachable from the initial state.  Violation of this principle leads to a contradiction
of requirements or a superfluous state.  No safe state should ever transition, as a result of a
computer control action, to an unsafe state.  In principle, an automated (i.e., computer controlled)
system should never transition to a hazardous state unless a failure has occurred.  In general, if
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operator action is considered (such as the issuing of a command), the previously stated
requirement may be impossible to accomplish given the requirements of certain systems.  In this
latter situation, the transition into and out of the unsafe state should be done in a manner that
takes the least amount of time and the system eventually reverts back to a safe state.

Once the system is in an unsafe state, either because of error conditions or unexpected input, the
system may transition to another unsafe state that represents a lower risk than the previous state.
If it is not possible to redesign the system so that all transitions from a hazardous state eventually
end in a safe state, then the approach must be to design the transitions to the lowest possible risk,
given the environment.  Not all RSM diagrams will be able to achieve an intrinsically safe
machine, that is, one that does not have a hazardous state.  The modeling process's main virtue
lies in the fact that, through analysis of the RSM, faults may be uncovered early in the life cycle.
The objective and challenge is to design a system that poses a tolerable level of risk.

The design of a robust system requires that, for all unsafe states, all soft and hard failure modes
be eliminated.  A soft failure mode occurs when an input is required in at least one state through
a chain of states to produce an output and that the loss of the ability to receive that input could
potentially inhibit the software.  A hard failure mode is analogous to a soft failure except that the
input is required for all states in the chain and the loss of the input will inhibit the output.

If a system allows for reversible commands, then it must check that, for every transition into a
state caused by the command, it can transition back to the previous state via a reverse command.
While in that state, an input sequence must be able to trigger the deactivation of the command.
In a similar fashion, if an alarm indicates a warning and the trigger conditions are no longer true,
then the alert should also cease (if appropriate operator acknowledgment action was performed
when required).  State transitions do not always have to be between different states.  Self loops
are permissible, but eventually every real-time system must initiate a different function and exit
from the self loop.  Watchdog timers may be used to catch timeouts for self loops.  The RSM
technique helps a designer by graphically representing these constraints and assisting in
specifying implementation level detail.

5.3.14.10 Conclusions

The RSM techniques described above can be used to provide analysis procedures to help find
errors and omissions.  Incorporating the RSM analysis into the development cycle is an important
step towards a design that meets or exceeds safety requirements.  Practically all the current safety
oriented methodologies rely on the quality of the analyst(s) for results and the techniques
mentioned above are a first attempt at formalizing a system's safety properties.

The RSM technique does not claim to guarantee the design of a 100% safe system.  Inevitably
some faults (primarily faults of omission) will not be caught, but the value of this methodology is
in the fact that many faults can be made evident at an early stage, if the right mix of experienced
people are involved in the analysis.  Complexity of current software and hardware has caused a
nonlinear increase in design faults due to human error.  For this reason and because testing does
not prove the absence of faults, it is recommended that the RSM modeling techniques be
employed as early as possible in the system life cycle.   The RSM methodology, if applied with
system safety considerations, is a valuable step towards a partial proof to show the effects and
consequences of faults on the system.  If the RSM model is robust and the design can be shown
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to have followed the criteria in the previous sections, then a significant milestone will have been
completed that demonstrates that the system is ready to proceed to the next phase in the lifecycle
and developers will have a high level model that satisfies a core set of requirements.

From an overall systems perspective, the RSM model is used to provide a high level view of the
actual system, and further refinements of the states can give insight into implementation detail.
This model is then checked against the rules formulated in the previous sections.  Deviation from
the rules involves additional risk and, as such, this additional risk should be evaluated and
documented.  This process of documentation is necessary for a post project analysis to confirm
the success of the system or to analyze the cause of any failures.

The technique of using RSMs to explore properties of safety critical systems is a highly
recommended practice that development teams should follow.  Verification of the safety
properties of the RSM should be performed as a team effort between software developers,
systems safety and software quality assurance.  If the RSM analysis or any equivalent technique
has not been performed for the design of a complex system, then that project is running the risk
that major design constraints will be put aside until late in the development cycle and will cause a
significant cost impact.

5.3.15 Formal Inspections
The process of Formal Inspection begun in previous design phases (e.g., Section 4.2.4) should
continue.

New software artifacts are now available, and new inspections checklists should be developed
appropriate for the new artifacts, and building on lessons learned earlier in the design lifecycle.
The artifacts of this design phase (e.g., PDL, prototype code) are more detailed than previous
phases.

5.4 Code Analysis
Code analysis verifies that the coded program correctly implements the verified design and does
not violate safety requirements.  In addition, at this phase of the development effort, many
unknown questions can be answered for the first time.  For example, the number of lines of code,
memory resources and CPU loads can be seen and measured, where previously they were only
predicted, often with a low confidence level.  Sometimes significant redesign is required based
on the parameters of the actual code.

Code permits real measurements of size, complexity and resource usage.

Code Analyses include the following:

1) Code Logic Analysis

2) Software Fault Tree Analysis (SFTA)

3) Petri-Nets

4) Code Data Analysis
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5) Code Interface Analysis

6) Measurement of Complexity

7) Code Constraint Analysis

8) Safe Subsets of Programming languages

9) Formal Methods and Safety-Critical Considerations

10) Requirements State Machines

Some of these code analysis techniques mirror those used in detailed design analysis.  However,
the results of the analysis techniques might be significantly different than during earlier
development phases, because the final code may differ substantially from what was expected or
predicted.

Each of these analyses, contained in this section, should be undergoing their second iteration,
since they should have all been applied previously to the code-like products (PDL) of the detailed
design.

There are some commercial tools available which perform one or more of these analyses in a
single package.  These tools can be evaluated for their validity in performing these tasks, such as
logic analyzers, and path analyzers.   However, unvalidated COTS tools, in themselves, cannot
generally be considered valid methods for formal safety analysis.  COTS tools are often useful to
reveal previously unknown defects.

Note that  the definitive formal code analysis is that performed on the final version of the code.
A great deal of the code analysis is done on earlier versions of code, but a final check on the final
version is essential.   For safety purposes it is desirable that the final version have no
“instrumentation” (i.e., extra code added), in order to see where erroneous jumps go to.   One
may need to run the code on an instruction set emulator which can monitor the code from the
outside, without adding the instrumentation.

5.4.1 Code Logic Analysis

Code logic analysis evaluates the sequence of operations represented by the coded program. Code
logic analysis will detect logic errors in the coded software. This analysis is conducted by
performing logic reconstruction, equation reconstruction and memory decoding.

Logic reconstruction entails the preparation of flow charts from the code and comparing them to
the design material descriptions and flow charts.

Equation reconstruction is accomplished by comparing the equations in the code to the ones
provided with the design materials.

Memory decoding identifies critical instruction sequences even when they may be disguised as
data.   The analyst should determine whether each instruction is valid and if the conditions under
which it can be executed are valid.   Memory decoding should be done on the final un-
instrumented code.
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Continue the following analysis as described previously in Section 5.3 DETAILED DESIGN
ANALYSIS:

5.4.2 Fault trees

See 5.3.6.

5.4.3 Petri nets.

See 5.3.7.

5.4.4 Code Data Analysis

Code data analysis concentrates on data structure and usage in the coded software.  Data analysis
focuses on how data items are defined and organized.  Ensuring that these data items are defined
and used properly is the objective of code data analysis.  This is accomplished by comparing the
usage and value of all data items in the code with the descriptions provided in the design
materials.

Of particular concern to safety is ensuring the integrity of safety critical data against being
inadvertently altered or overwritten.  For example, check to see if interrupt processing is
interferring with safety critical data.  Also, check the “typing” of safety critical declared
variables.

5.4.5 Code Interface Analysis

Code interface analysis verifies the compatibility of internal and external interfaces of a software
component. A software component is composed of a number of code segments working together
to perform required tasks. These code segments must communicate with each other, with
hardware,  other software components,  and human operators to accomplish their tasks.   Check
that parameters are properly passed across interfaces.

Each of these interfaces is a source of potential problems.  Code interface analysis is intended to
verify that the interfaces have been implemented properly.

Hardware and human operator interfaces should be included in the “Design Constraint Analysis”
discussed in Section 5.4.7 Design Constraint Analysis  below.

5.4.6 Measurement of Complexity

As a goal, software complexity should be minimized to reduce likelihood of errors.   Complex
software also is more likely to be unstable, or suffer from unpredictable behavior.

Modularity is a useful technique to reduce complexity.  Complexity can be measured via
McCabe’s metrics and similar techniques.

5.4.7 Update Design Constraint Analysis

The criteria for design constraint analysis applied to the detailed design in section 5.3.4 can be
updated using the final code.  At the code phase, real testing can be performed to characterize the
actual software behavior and performance in addition to analysis.



NASA-GB-1740.13-96113

The physical limitations of the processing hardware platform should be addressed. Timing, sizing
and throughput analyses should also be repeated as part of this process to ensure that computing
resources and memory available are adequate for safety critical functions and processes.

Underflows/overflows  in certain languages (e.g., ADA) give rise to “exceptions” or error
messages generated by the software.   These conditions should be eliminated by design if
possible;  if they cannot be precluded, then error handling routines in the application must
provide appropriate responses, such as retry, restart, etc.

5.4.8 Code Inspection Checklists (including coding standards)

Coding standards are based on style guides and safe subsets of programming languages.
Checklists should be developed during formal inspections to facilitate inspection of the code to
demonstrate conformance to the coding standards.

Fagan Formal Inspections (FIs) are one of the best methodologies available to evaluate the
quality of code modules and program sets.  Many projects do not schedule any formal project-level
software reviews during coding.  When software is ready to be passed on to subsystems for
integration, projects may elect to conduct an Integration Readiness Review when audit or inspection
reports and problem reports may be evaluated.  Other than these reports, the only formal
documentation usually produced are the source code listings from configuration management.

5.4.9 Formal Methods

Generation of code is the ultimate output of Formal Methods.  In a "pure" Formal Methods
system, analysis of code is not required.   In practice, however, attempts are often made to
"apply" Formal Methods to existing code after the fact.  In this case the analysis techniques of the
previous sections (5.4.1 through 5.4.5) may be used to "extract" the logic of the code, and then
compare the logic to the formal requirements expressions from the Formal Methods.

5.4.10 Unused Code Analysis

A common real world coding error is generation of code which is logically excluded from
execution; that is, preconditions for the execution of this code will never be satisfied.  Such code
is undesirable for three reasons; a) it is potentially symptomatic of a major error in implementing
the software design; b) it introduces unnecessary complexity and occupies memory or mass
storage which is often a limited resource; and c) the unused code might contain routines which
would be hazardous if they were inadvertently executed (e.g., by a hardware failure or by a
Single Event Upset.  SEU is a state transition caused by a high speed subatomic particle passing
through a semiconductor - common in nuclear or space environments).

There is no particular technique for identifying unused code; however, unused code is often
identified during the course of performing other types of code analysis.   Unused code can be
found during unit testing with COTS coverage analyzer tools.

Care should be taken during logical code analyses to ensure that every part of the code is
eventually exercised at some time during all possible operating modes of the system.
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5.5 Test Analysis
Two sets of analyses should be performed during the testing phase:

1) analyses before the fact to ensure validity of tests

2) analyses of the test results

During the test planning discussed in Section 4.6, tests are devised to verify all safety
requirements where testing has been selected as appropriate verification method.  This is not
considered here as analysis.  Analysis before the fact should, as a minimum, consider test
coverage for safety critical Must-Work-Functions.

5.5.1 Test Coverage

For small pieces of code it is sometimes possible to achieve 100% test coverage (i.e., to exercise
every possible state and path of the code).   However, it is often not possible to achieve 100 %
test coverage due to the enormous number of permutations of states in a computer program
execution, versus the time it would take to exercise all those possible states.   Also there is often
a large indeterminate number of environmental variables, too many to completely simulate.

Some analysis is advisable to assess the optimum test coverage as part of the test planning
process.   There is a body of theory which attempts to calculate the probability that a system with
a certain failure probability will pass a given number of tests.   This is discussed in "Evaluation
of Safety Critical Software", David L. Parnas, A. John van Schouwen and Shu Po Kwan,
Communications of ACM, June 1990 Vol 33 Nr 6 [43].

Techniques known as “white box” testing can be performed, usually at the modular level.

Statistical methods such as Monte Carlo simulations can be useful in planning "worst case"
credible scenarios to be tested.

5.5.2 Test Results Analysis

Test results are analyzed to verify that all safety requirements have been satisfied.   The analysis
also verifies that all identified hazards have been eliminated or controlled to an acceptable level
of risk.   The results of the test safety analysis are provided to the ongoing system safety analysis
activity.

All test discrepancies of safety critical software should be evaluated and corrected in an
appropriate manner.

5.5.3 Independent Verification and Validation

For high value systems with high risk software, an IV&V organization is usually involved to
oversee the software development.   The IV&V organization should fully participate in the
validation of test analysis.

5.6 Operations & Maintenance
Maintenance of software is describe above in section 4.8.
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During the operational phase of a safety critical software set, rigorous configuration control must
be enforced.    For every proposed software change, it is necessary to repeat each development
and analysis task performed during the life cycle steps previously used  for each modification,
from requirements (re-)development through code (re-)test.   The safety analyst must ensure that
proposed changes do not disrupt or compromise pre-established hazard controls.

It is advisable to perform the final verification testing on an identical offline analog (or
simulator) of the operational software system, prior to placing it into service.
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